The Multidimensional Refinement Indicators Algorithm for Adaptive Parameterization

H. Ben Ameur ${ }^{1}$, * F. Clément ${ }^{2}$, P. Weis ${ }^{2}$ and G. Chavent ${ }^{2}$
${ }^{2}$ Projet Estime, INRIA-Rocquencourt
${ }^{1}$ FSB and ENIT-LAMSIN
University of Tunis, BP 37, Le Belvdre 1002 Tunis, Tunisia
hend.benameur@enit.rnu.tn
Chesnay cedex, France
Francois.Clement@inria.fr
Pierre.Weis@inria.fr
Guy.Chavent@inria.fr

Key Words: Inverse problem, parameter estimation, adaptive parameterization, image segmentation.

Abstract

The estimation of distributed parameters in a partial differential equation (PDE) from measures of the solution of the PDE may lead to underdetermination problems. The choice of a parameterization is a frequently used way of adding a priori information by reducing the number of unknowns according to the physics of the problem. The refinement indicators algorithm proposed in [2, 1] for the estimation of hydraulic transmissivities provides a fruitful adaptive parameterization technique that parsimoniously opens the degrees of freedom in an iterative way driven at first order by the model to locate the discontinuities of the sought parameter.

The main findings are:
(i) The generalization of the refinement indicators algorithm to the estimation of distributed multidimensional parameters in any PDE.
(ii) The quantitative relationship between the refinement indicator and the decrease of the least-squares data misfit objective function in the linear case.
(iii) An amazing image segmentation technique corresponding to the application of the multidimensional algorithm to the identity model in the RGB color space.
We consider the case where parameters are distributed and possibly vector valued, i.e. belong to a space P of functions defined over a domain Ω with values in $\mathbb{R}^{n_{p}}$ ($n_{p} \geq 1$ is the dimension of the vector parameter $p(x)$ at any $x \in \Omega$). Let the forward operator \mathcal{F} be the composition of the model operator computing the solution of the PDE for a given parameter p with the observation operator computing the output of the observation device applied to the solution of the PDE. Let $d \simeq \mathcal{F}\left(p_{\text {true }}\right)$ be some measurements of the output for some unknown parameter $p_{\text {true }} \in P$, and let

$$
\begin{equation*}
\mathcal{J}(p)=\frac{1}{2}\|d-\mathcal{F}(p)\|^{2} \tag{1}
\end{equation*}
$$

be the least-squares misfit between the data d and the corresponding quantities $\mathcal{F}(p)$ computed from the current parameter p. The unknown parameter $p_{\text {true }}$ can be determined by solving the least-squares inverse problem set as the minimization of the misfit $\mathcal{J}(p)$ with respect to the parameter $p \in P^{\text {ad }}$.

To reduce the number of unknowns, we search for the parameter in a subspace of P of (small) finite dimension. More precisely, a sequence of subspaces $\left(P_{n}\right)_{n}$ is constructed and at each iteration step an approximation $p_{n} \in P_{n}$ of the unknown parameter is computed. The idea of adaptive parameterization is to incrementally add degrees of freedom. These degrees of freedom correspond to the discontinuities of the sought parameter, they are chosen according to refinement indicators.
It is convenient to consider P_{n} as the range of an—unknown—parameterization map

$$
\begin{equation*}
\mathcal{P}_{n}: m_{n} \in M_{n}^{\mathrm{ad}} \longmapsto p_{n} \in P_{n}^{\mathrm{ad}} \tag{2}
\end{equation*}
$$

where m_{n} is the coarse parameter (of small finite dimension), by opposition to the fine parameter p_{n} (of large, and possibly infinite dimension). $M_{n}^{\text {ad }}$ is the space of admissible coarse parameters. Typically, m_{n} is made of the coefficients of $p_{n} \in P_{n}$ on a basis of P_{n}, in which case \mathcal{P}_{n} is a linear operator. But the parameterization map can also be nonlinear. For any parameterization map \mathcal{P}_{n}, we define the same objective function on $M_{n}^{\text {ad }}$ by

$$
\begin{equation*}
\mathcal{J}_{n}\left(m_{n}\right)=\mathcal{J}\left(\mathcal{P}_{n}\left(m_{n}\right)\right) \tag{3}
\end{equation*}
$$

and the least-squares problem becomes:

$$
\begin{equation*}
\operatorname{minimize} \mathcal{J}_{n}\left(m_{n}\right) \text { for } m_{n} \in M_{n}^{\text {ad }} \tag{4}
\end{equation*}
$$

Going from the nth iteration to the next one, we refine one zone of the current parameterization, which means we allow the parameter to have a discontinuity in this zone at some location. The norm of the derivative of the objective function at the optimum with respect to the amplitude c of the discontinuity taken at $c=0$ gives us the first order effect on the optimal value of the objective function produced by the refinement. This norm is the refinement indicator corresponding to the discontinuity. This is also the norm of the Lagrange multiplier associated with the constraint expressing the discontinuity jump.

REFERENCES

[1] H. Ben Ameur, G. Chavent, and J. Jaffré. "Refinement and coarsening indicators for adaptive parametrization: application to the estimation of the hydraulic transmissivities". Inverse Problems, Vol. 18, 775-794, 2002.
[2] G. Chavent and R. Bissell. "Indicator for the refinement of parametrization". In M. Tanaka and G. S. Dulikravich, editors, Inverse Problems in Engineering Mechanics (Proceedings of the International Symposium on Inverse Problemsin Engineering Mechanics 1998 (ISIP'98), Nagano, Japan), 309-314. Elsevier, 1998.
[3] H. Ben Ameur, F. Clément, P. Weis and G. Chavent. "The Multidimensional Refinement Indicators Algorithm for Optimal Parameterization". Journal of Inverse and Ill-Posed Problems, to appear, 2008.

