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ABSTRACT

The estimation of distributed parameters in a partial differential equation (PDE) from measures of the
solution of the PDE may lead to underdetermination problems. The choice of a parameterization is a
frequently used way of adding a priori information by reducing the number of unknowns according to
the physics of the problem. The refinement indicators algorithm proposed in [2, 1] for the estimation of
hydraulic transmissivities provides a fruitful adaptive parameterization technique that parsimoniously
opens the degrees of freedom in an iterative way driven at first order by the model to locate the discon-
tinuities of the sought parameter.

The main findings are:
(i) The generalization of the refinement indicators algorithm to the estimation of distributedmultidi-
mensional parameters in any PDE.
(ii) The quantitative relationship between the refinement indicator and the decrease of the least-squares
data misfit objective function in the linear case.
(iii) An amazing image segmentation technique corresponding to the application of the multidimen-
sional algorithm to the identity model in the RGB color space.

We consider the case where parameters are distributed and possibly vector valued, i.e. belong to a
spaceP of functions defined over a domainΩ with values inRnp (np ≥ 1 is the dimension of the
vector parameterp(x) at anyx ∈ Ω). Let the forward operatorF be the composition of the model
operator computing the solution of the PDE for a given parameterp with the observation operator
computing the output of the observation device applied to the solution of the PDE. Letd ' F(ptrue) be
some measurements of the output for some unknown parameterptrue ∈ P , and let

J (p) =
1
2
‖d−F(p)‖2 (1)

be the least-squares misfit between the datad and the corresponding quantitiesF(p) computed from
the current parameterp. The unknown parameterptrue can be determined by solving the least-squares
inverse problem set as the minimization of the misfitJ (p) with respect to the parameterp ∈ P ad.



To reduce the number of unknowns, we search for the parameter in a subspace ofP of (small) finite
dimension. More precisely, a sequence of subspaces(Pn)n is constructed and at each iteration step an
approximationpn ∈ Pn of the unknown parameter is computed. The idea of adaptive parameterization
is to incrementally add degrees of freedom. These degrees of freedom correspond to the discontinuities
of the sought parameter, they are chosen according torefinement indicators.

It is convenient to considerPn as the range of an—unknown—parameterization map

Pn : mn ∈ Mad
n 7−→ pn ∈ P ad

n (2)

wheremn is thecoarseparameter (of small finite dimension), by opposition to thefineparameterpn

(of large, and possibly infinite dimension).Mad
n is the space of admissible coarse parameters. Typically,

mn is made of the coefficients ofpn ∈ Pn on a basis ofPn, in which casePn is a linear operator. But
the parameterization map can also be nonlinear. For any parameterization mapPn, we define the same
objective function onMad

n by
Jn(mn) = J (Pn(mn)), (3)

and the least-squares problem becomes:

minimizeJn(mn) for mn ∈ Mad
n . (4)

Going from thenth iteration to the next one, we refine one zone of the current parameterization, which
means we allow the parameter to have a discontinuity in this zone at some location. The norm of the
derivative of the objective function at the optimum with respect to the amplitudec of the discontinuity
taken atc = 0 gives us the first order effect on the optimal value of the objective function produced by
the refinement. This norm is therefinement indicatorcorresponding to the discontinuity. This is also
the norm of the Lagrange multiplier associated with the constraint expressing the discontinuity jump.
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