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ABSTRACT

A so-called residual-based (RB) scheme has been previously developed [1] for computing com-
pressible flows governed by the Euler or Navier-Stokes equations on structured grids; second,
third and higher-order versions of the scheme were successfully applied to inviscid/viscous
steady/unsteady flows, with good shock capturing properties for transonic or supersonic flows.
The present contribution describes the extension of a third-order RB scheme to general un-
structured grids using a finite volume (FV) framework.
The FV discretization of the Euler system wt +∇ · FE(w) = 0 is expressed as :
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with n the time step counter, ∆wn = wn+1 − wn, wi the state at the center of the control cell
Ωi, defined by a set I(Ωi) of faces Γi,k. The numerical flux (HE

i,k)g approximates the normal
convective flux at Gauss-point g on the face Γi,k, with an associated quadrature weight ωg. The
numerical flux defining the RB scheme takes the following form:
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is a non-dissipative approximation of the physical normal flux vector with HE a

simply centered formula and (wL
i,k)g, (wR

i,k)g the reconstructed states on the left and right sides
of the interface Γi,k computed at the Gauss-point g on that face, with the unit normal vector
ni,k pointing from cell i to the neighboring cell o(i, k) sharing Γi,k. For a 3rd-order formulation,

states w
L/R
i,k are computed at each Gauss-point with a quadratic reconstruction taken from [2] :

(wL/R
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with rg, ri/o(i,k) the respective positions of the of the Gauss-point g and the left or right
cell centroid Ci, Co(i,k), ∇wi/o(i,k) and Hi/o(i,k) respectively a second-order estimate of the



cell-center gradient and a first-order estimate of the Hessian of the solution at the left or
right cell centroid, both obtained using a least-square formula on an extended support. The
Venkatakrishnan’s limiter φ is completed with a binary detector σ such that σ = 1 (quadratic
reconstruction) if no high gradient is detected while σ = 0 (limited linear reconstruction) in
high gradient region. The key ingredient of the scheme is the RB dissipation (di,k)g computed
at any Gauss-point g of face Γi,k as :

(di,k)g = di,k =
1
2
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where Φi,k is a matrix coefficient of order O(1) ensuring the scheme’s dissipation [1] and Ri,k

is a discrete form of the residual computed on a shifted cell Ωi,k enclosing face Γi,k :
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1
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∫
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∇ · FE(w) dΩ. (5)

This third-order RB dissipation adapts itself to the problem considered : when solving the
Navier-Stokes equations wt +∇ · (FE − F V ) = 0, the flux FE in (5) is replaced with the total
flux FE − F V . It is computed from cell-centered states and second-order estimates of node
values. Detailed comparisons, in terms of both accuracy and efficiency, between the RB scheme
and conventional upwind schemes (Roe, AUSM+, HLLC . . .) relying on quadratic reconstruc-
tion will be provided at the Conference for 2D and 3D external aerodynamic problems. The
preliminary results presented below illustrate the ability of the third-order RB scheme to yield
accurate solutions of 2D inviscid flows.
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(a) subsonic case(M∞ = 0.5, α = 2).
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(b) transonic case(M∞ = 0.8, α = 1.25).

Figure 1: Inviscid flow over a NACA0012 airfoil. Pressure coefficient distributions computed using
the third-order RB scheme and third-order AUSM+ scheme. (a) lift coefficient for the subsonic case :
CAUSM+

L = 0.282, CRB
L = 0.280. (b) lift and drag coefficients for the transonic case : CAUSM+

L = 0.345,
CRB

L = 0.341; CAUSM+
D = 0.0223, CRB

D = 0.0221.
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