
8th. World Congress on Computational Mechanics (WCCM8) 
5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) 

June 30 – July 4, 2008  
Venice, Italy 

 

 

A 2D FE APPROACH FOR NONLOCAL ELASTIC PROBLEMS 

*A. Sofi¹, A. A. Pisano² and P. Fuschi³ 
¹ University “Mediterranea” of 

Reggio Calabria (DASTEC) 
Via Melissari 89124, Reggio 

Calabria, Italy 
alba.sofi@unirc.it 

² University “Mediterranea” of 
Reggio Calabria (DASTEC) 
Via Melissari 89124, Reggio 

Calabria, Italy 
aurora.pisano@unirc.it 

³ University “Mediterranea” of 
Reggio Calabria (DASTEC) 
Via Melissari 89124, Reggio 

Calabria, Italy 
paolo.fuschi@unirc.it 

 

Key Words: Nonlocal Elasticity, Nonlocal Finite Elements, 2D Mechanical Problems. 

ABSTRACT 

The key idea of nonlocal approaches to elastic mechanical problems is to use a 
continuum formulation endowed with information regarding the material behaviour at  
microstructural level. To this aim, an internal length material scale (say 0l ), driving the 
modelling of the diffusion processes involving neighbouring points linked together by 
long range forces, is introduced (see e.g. [1]).  

The present study refers to integral type nonlocal elasticity as the one envisaged by 
Eringen and co-workers [2]. It refers to linear homogeneous isotropic continua and it is 
characterized by a stress-strain relation of convolutive-type containing an attenuation 
function, ( , )A ′x x , aimed at capturing the diffusion process of the nonlocality effects. In 
particular, the assumed constitutive equation is: 
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where: 1ξ  and 2ξ  denote the volume fractions of material complying with local and 
nonlocal elasticity, respectively; D  is the tensor of classical isotropic elasticity. 

In this paper a numerical technique, first proposed in [3], as nonlocal finite element 
method (NL-FEM), is implemented to solve 2D nonlocal elastic problems. It is worth 
noting that the NL-FEM leads to a solving equation system formally equal to that 
pertaining to the standard FEM, but with the relevant global (nonlocal) stiffness matrix 
reflecting all the nonlocality features of the problem. The solving linear equations 
system can in fact be given in the shape: 
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where: nC  and mC  denote the connettivity matrices; loc
nk and nonloc

nmk  are the element 
local and nonlocal stiffness matrices, respectively. Each finite element (FE), besides the 
standard element stiffness matrix loc

nk ,  is endowed with a direct- or self-stiffness 

matrix, nonloc
nnk , plus a set of indirect- or cross-stiffness matrices, nonloc

nmk , strictly related 



 

to the mesh geometry, and containing information coming from the other FEs.  

The cross-stiffness matrix is in fact given by: 
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and, in practice, it vanishes for FEs too far from each other with respect to an influence 
distance, i.e. the maximum distance beyond which the nonlocality effects are almost 
negligible ( ( , ) 0A ′ ≅x x ). Thus, the global stiffness matrix, which is symmetric and 
positive semi-definite, turns out to be banded but with a bandwidth in general larger 
than in the standard FEM. 

The NL-FEM has been applied to analyze a nonlocal elastic square plate as the one 
shown in Figure 1a. The plate is subjected to uniform prescribed displacements 

0.01 cmxu =  while 6 22.1 10 daN / cmE = × ; 5 cmL = ; and the thickness 0.5 cmt = . 
Numerical analyses have been performed assuming a bi-exponential attenuation 
function. The plate has been discretized using a uniform mesh of 30 30×  eight-nodes 
isoparametric elements, carrying on the numerical integration by means of Gauss 
quadrature with 9 points per element. Figure 1b displays a 3D plot of the strain 
distribution ( , )x x yε  obtained for 0 0.1 cm=l  and 2 0.5ξ = . As expected, the uniform 
local elastic solution is recovered in the core domain, while an increasing trend of the 
strains is detected close to the edges. 

 

 

 

 

 

 

 

 
 

 

Figure 1: a) Plate subjected to uniform prescribed displacements; b) Strain distribution in the x direction. 
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