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ABSTRACT

The development of versatile hydrogeochemical mulitcomponent transport simulation tools that handle
the variety of coupled hydraulic, chemical, and biological processes, which are relevant for the fate of
contaminant plumes in porous media, accurately and efficiently, is still a demanding task. The general
coupled PDE/ODE system for reactive multicomponent transport in the solid and aqueous phase reads

∂t(Θci)−∇ · (D∇ci − qci) = Θ
NR∑
r=1

νirRr , and ∂t(cj) =
NR∑
r=1

νjrRr ,

with time t ∈ (0, T ), x ∈ Ω ⊂ Rd, d ∈ {1, 2, 3}, volumetric water content Θ(x, t), the solute con-
centration ci(x, t). cj(x, t) is the concentration of immobile species, D(x, t) the diffusion–dispersion–
tensor, and q(x, t) the specific discharge. The equations are coupled with each other via the reaction
rates Rr that account, e.g., for natural degradation processes of organic contaminants or kinetic reac-
tions according the law of mass action. A popular approach to solve this problem class is to decouple
reaction and transport parts. This allows to reduce the computational burden, to apply specific solution
techniques for the subproblems and even to use existing codes for them, but introduces a consistency
error which however can vanish, e.g., for models with linear reaction terms independent of space, and
a divergence free flow field [1]; situations, though, that are of limited practical relevance.

Thus we investigate further the global implicit solution approach for the above system that treats subpro-
cesses simultaneously, apply Newton’s method with Armijo’s rule as nonlinear solver and develop new
efficient solution strategies by modifying the Jacobian of the problem. This leads to decoupled blocks
in the Jacobian that can be solved independently from each other. As even in large chemical systems
typically only few species are directly coupled in one reaction, the resulting sparse matrix structure
in the finite element matrix can be exploited to reduce the computational effort. After the variational
formulation of the coupled nonlinear systems of parabolic partial and ordinary differential equations



a H1-conforming finite element discretization in space with linear ansatz functions is pursued, com-
bined with the implicit Euler method or the BDF-2 scheme in time. A nonlinear equation system of
the dimension (N + 1) × NS results (N : DOF in space, NS : number of species). When numbering
the DOF nodewise (in the order of the elements), in the Jacobian at each node block matrices of di-
mension NS ×NS occur, containing the partial derivatives of the discretized problem according to the
species concentrations. Those are essentially the derivatives of the reaction terms, which read, e.g., for
geochemical kinetic reaction rates according to the mass action law:

∂Rr

∂ck
= kb

r(−νkr)c
(−νkr−1)
k

∏
i6=k

c−νir
i

(with stoichiometric factor νkr < 0, product concentration ck, and kb
r as the backward reaction rate

constant), for other rates as degradation according to multiple Monod kinetics see [1]. As not all of the
species are coupled by reactions to each other, through an analysis of the reaction network reducible
matrix parts can be identified – even in course of the simulation – and solved seperately. This is the key
point to reduce the computational effort while at the same time solving the global implicit problem in
one Newton step.

The reducability of the Jacobian can also be enforced by the neglection of weak coupling terms which
arise when small reaction rate constants or small concentrations occur. This corresponds to a modi-
fied Newton’s method, then. As the correct right-hand-side of the problem is assembled, the solution
still converges to the correct, process-preserving (coupled) solution. If the convergence properties of
the Newton scheme are not deteriorated substantially, a clear gain in efficiency can be reported. The
Damköhler number can be a criterium for the decision to neglect reaction terms.

An academic 16 species example in 1D, where the band structure is very favorable, reveals the potential
of the method, with a speed up of factor ≈ 93 in the direct linear solver and 9 in total CPU time.
Another 12 species examples according to [1,3] showed speed ups of factor 37 in the linear solver and
4 in total. A real world EDTA degradation example [2] which has been used in the literature to test
implementations of reactive multispecies models has been solved with this technique also.

In 2D the matrix structure is less optimal as the band width is broader and a direct solver probably is
not competitive. Thus the potential efficiency gain is only of order Np instead of N2

p (where Np is the
number of equal parts the Jacobian is split in). For iterative solvers however the iteration number may
differ for the matrix parts, what can be an additional gain. The method has been implemented with a
fully adaptive algorithm analysing the connectivity graph of the Jacobian in potentially each time step.
Experiments with the above 12 species example using BiCGStab as linear solver also showed promising
results with accelerations of factor 4 in the solver part.
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