
8th. World Congress on Computational Mechanics (WCCM8)
5th European Congress on Computational Methods in Applied Sciences and Engineeering (ECCOMAS 2008)

June 30 –July 5, 2008
Venice, Italy

ON R-ADAPTIVE MESH OPTIMIZATION FOR LOCAL QUANTITIES
OF INTEREST BASED ON THE MATERIAL RESIDUAL

D. Materna∗ and F.-J. Barthold

Chair of Numerical Methods and Information Processing
Dortmund University of Technology

August-Schmidt-Str. 8, D-44227 Dortmund, Germany
daniel.materna@tu-dortmund.de, franz-joseph.barthold@tu-dortmund.de

www.bauwesen.uni-dortmund.de/nmi

Key Words: Goal-oriented r-adaptivity, a posteriori error control, configurational mechanics, mesh
optimization.

ABSTRACT

The error of a local quantity of interest depends on the error in the corresponding dual solution or
generalized Green’s function. This fact is used in dual-weighted based goal-oriented error estimation
techniques and adaptivity algorithms. The physical residual is weighted with the error in the dual so-
lution in order to obtain a suitable bound for the error in the quantity of interest. Furthermore, error
indicators for mesh optimization are derived by weighting the error indicator of the primal problem
with the corresponding one of the dual problem.

This contribution is concerned with goal-oriented r-adaptivity by using the so-called material residual.
The material residual is also referred to as the weak form of the configurational force balance or pseudo-
momentum equation and is usually used in the context of material inhomogeneities as well as any kinds
of material defects, see e.g. the monographs [2, 3]. In the context of the finite element method, we
obtain a material residual as a result of the non-optimal numerical solution, which is a result of the
non-optimal discretization in the sense of the minimization of the overall energy [4, 5]. Hence, a non-
vanishing material residual within the domain is an indicator for a non-optimal finite element mesh. This
is used in different ways for global mesh optimization in recent years by some research groups, see the
references in [4, 5]. The first discussion in the direction of configurational forces induced by finite
element discretization was done by [1]. The mesh optimization problem has a long tradition. First steps
for the optimization of finite element meshes based on discrete formulations of energy minimization
goes back to the seventies, see e.g. [6]. In fact, the authors obtained the same discrete indicators for
mesh optimization like the above mentioned approach from configurational mechanics, but they have
not called them material or configurational forces.

A common approach for mesh optimization techniques is based on variational principles. We consider
the total potential energy E(u, s) of a hyperelastic body. The energy depends on the state function
u ∈ V and on a generalized design or control function s ∈ D, which specifies in an abstract sense



the current reference configuration ΩR, i.e. ΩR = ΩR(s). In the context of the finite element method,
the design function could be a subset of nodal coordinates which are allowed to vary and the reference
configuration is the current mesh. If we use a geometrical representation, the design function could be
a subset of control points of geometrical objects which specify the current reference configuration, e.g.
Bézier curves. The space V denotes the usual Sobolev space andD the space with all admissible design
functions. The partial variation of E with respect to u leads to the physical residual R : V → R. In
the same manner, variation with respect to s leads to the material residual G : D → R. The overall
minimization of the energy with respect to u and s requires the solution of the coupled physical and
material problem. The simultaneous solution of the coupled problem ends in a system of linearized
variational equations. Both problems are coupled by the pseudo load operator, which plays an important
role for sensitivity analysis of physical and material quantities [4, 5]. Different numerical difficulties
arise due to the simultaneous solution of this problem. Alternatively, a staggered solution method could
be used, i.e. we solve the physical problem with a fixed design s and thereafter the material problem
with a fixed deformation u. For a given solution u of the physical residualR(u, s; ·), we have to solve
G(u, s; ·) = 0 within a Newton algorithm.

The resulting mesh is optimal with respect to the overall energy, but nothing could be said about the
quality of local quantities of interest. We use the material residual of the primal and dual problem in or-
der to obtain an error indicator for goal-oriented mesh optimization. The resulting mesh is optimal with
respect to a local quantity of interest. By means of selected computational examples, we demonstrate
the capability of the proposed framework.
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