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ABSTRACT

Automatic (or algorithmic) differentiation [1] is a techinie developed to differentiate computer codes
exactly (up to numerical precision) and with minimal uséemention. The technique exploits the fact
that every computer program executes a sequence of elemeaniifimetic operations. A set of inde-
pendent variables is defined in the beginning of the comjoumatn the case of shape optimization
[2] the independent variables can be for example the ge@rakttesign parameters or the mesh nodal
co-ordinates. The chain rule of differentiation is thencassively applied to every elementary opera-
tion throughout the computation. In so called forward moflaudomatic differentiation the derivative
information is propagated forward in the execution chain.

We have implemented a simple lightweight dynamic sparsedai derivative propagation technique.
Dynamic means that we automatically at run time capture ¢fetionships between the dependent
and the independent variables (index domains of the depéndeables). By sparse we mean that the
derivative information of each intermediate variable igeshin a sparse representation. This allows the
computation of non-zero partial derivatives only, withthe need of separate sparsity pattern detection
and graph coloring [3] phases. Details of our implementatice given in [4]. Bischof et al. present
a similar technigue in [5], using an additional library eallSparsLinC for the sparse storage of the
derivatives.

Our implementation is based on the operator overloadingnigae of C++ programming language.
Thanks to the operation overloading the code exploitingraatic differentiation is mostly identical

to the one that uses regular real variables, since the cemiaikes care of calling the appropriate
functions implementing the derivative computation. Thus work of converting an original simulator
into a one that computes also the geometrical sensitivofiélse solution comprises mostly of replacing
the variables with their AD counterparts where needed.

This automatic index domain capturing makes the technigsg en the developer of the code, since
the developer does not have to manually keep track of thendiepeies of the variables, which could



require a special structure from the code. This is espgdmportant when the technique is applied to
an existing solver.

Applicability of the implementation is demonstrated by gh@ptimization examples. We have applied
so called pseudo-solid approach to solve free boundanjigrabof Bernoulli type [6]. This approach
treats the free boundary problem as a coupled non-linedsigmm which is solved using Newton it-
eration with an exact Jacobian. The location of the free Hagnis then optimized by adjusting the
shape of another boundary. To do this, the non-linear statdgm is differentiated with respect to the
geometry. Implementation of this technique is greatlyli@ted by the use of the presented automatic
differentiation technique.

An existing antenna simulation software based on the methoagoments (integral equation formula-
tion) has also been differentiated with respect to the gégmesing the presented technique [4]. Vir-
tually no changes to the program structure had to be madepG@mtional performance of the original
simulation code and an automatically differentiated \@rsiere compared, and it was found out that
assembly time of the system matrix was only a little over timmes slower when the reguldioubl e
andconpl ex<doubl e> types were replaced by their AD counterparts. The compmurigtme natu-
rally increases in the number of derivatives that have todmeputed, but the increase is linear only if
all the independent variables affect all the system matérments.
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