
8th. World Congress on Computational Mechanics (WCCM8)
5th European Congress on Computational Methods in Applied Sciences and Engineeering (ECCOMAS 2008)

June 30 –July 5, 2008
Venice, Italy

SPARSE FORWARD MODE AUTOMATIC DIFFERENTIATION
APPLIED TO SHAPE OPTIMIZATION

* Jukka I. Toivanen 1, Raino A. E. Mäkinen2

University of Jyväskylä
Dept. Mathematical Information Technology
P.O. Box 35 (Agora)
FI-40014 University of Jyväskylä
1 jukka.toivanen@jyu.fi
2 raino.makinen@jyu.fi

Key Words: Automatic Differentiation, Shape Optimization

ABSTRACT

Automatic (or algorithmic) differentiation [1] is a technique developed to differentiate computer codes
exactly (up to numerical precision) and with minimal user intervention. The technique exploits the fact
that every computer program executes a sequence of elementary arithmetic operations. A set of inde-
pendent variables is defined in the beginning of the computation. In the case of shape optimization
[2] the independent variables can be for example the geometrical design parameters or the mesh nodal
co-ordinates. The chain rule of differentiation is then successively applied to every elementary opera-
tion throughout the computation. In so called forward mode of automatic differentiation the derivative
information is propagated forward in the execution chain.

We have implemented a simple lightweight dynamic sparse forward derivative propagation technique.
Dynamic means that we automatically at run time capture the relationships between the dependent
and the independent variables (index domains of the dependent variables). By sparse we mean that the
derivative information of each intermediate variable is saved in a sparse representation. This allows the
computation of non-zero partial derivatives only, withoutthe need of separate sparsity pattern detection
and graph coloring [3] phases. Details of our implementation are given in [4]. Bischof et al. present
a similar technique in [5], using an additional library called SparsLinC for the sparse storage of the
derivatives.

Our implementation is based on the operator overloading technique of C++ programming language.
Thanks to the operation overloading the code exploiting automatic differentiation is mostly identical
to the one that uses regular real variables, since the compiler takes care of calling the appropriate
functions implementing the derivative computation. Thus the work of converting an original simulator
into a one that computes also the geometrical sensitivitiesof the solution comprises mostly of replacing
the variables with their AD counterparts where needed.

This automatic index domain capturing makes the technique easy on the developer of the code, since
the developer does not have to manually keep track of the dependencies of the variables, which could



require a special structure from the code. This is especially important when the technique is applied to
an existing solver.

Applicability of the implementation is demonstrated by shape optimization examples. We have applied
so called pseudo-solid approach to solve free boundary problems of Bernoulli type [6]. This approach
treats the free boundary problem as a coupled non-linear problem, which is solved using Newton it-
eration with an exact Jacobian. The location of the free boundary is then optimized by adjusting the
shape of another boundary. To do this, the non-linear state problem is differentiated with respect to the
geometry. Implementation of this technique is greatly facilitated by the use of the presented automatic
differentiation technique.

An existing antenna simulation software based on the methodof moments (integral equation formula-
tion) has also been differentiated with respect to the geometry using the presented technique [4]. Vir-
tually no changes to the program structure had to be made. Computational performance of the original
simulation code and an automatically differentiated version were compared, and it was found out that
assembly time of the system matrix was only a little over two times slower when the regulardouble
andcomplex<double> types were replaced by their AD counterparts. The computation time natu-
rally increases in the number of derivatives that have to be computed, but the increase is linear only if
all the independent variables affect all the system matrix elements.

REFERENCES

[1] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, 2000.

[2] J. Haslinger, and R.A.E. Mäkinen,Introduction to Shape Optimization: Theory,
Approximation, and Computation, SIAM, 2003.

[3] A.H. Gebremedhin, F. Manne, and A. Pothen, “What Color isYour Jacobian? Graph
Coloring for Computing Derivatives”,Siam Review, Vol. 47, 629–705, 2005.

[4] J.I. Toivanen, R.A.E Mäkinen, S. Järvenpää, P. Ylä-Oijala, and J. Rahola, “Electromagnetic
Sensitivity Analysis and Shape Optimization Using Method of Moments and Automatic
Differentiation”, Submitted toIEEE Transactions on Antennas & Propagation.

[5] C.H. Bischof, P.M. Khademi, A. Buaricha, and C. Alan. “Efficient Computation
of Gradients and Jacobians by Dynamic Exploitation of Sparsity in Automatic
Differentiation”. Optimization Methods and Software, Vol. 7, 1–39, 1996.

[6] J.I. Toivanen, R.A.E. Mäkinen, and J. Haslinger, “Shape Optimization of Systems Governed
by Bernoulli Free Boundary Problems”, Submitted toComputer Methods in Applied
Mechanics and Engineering.


