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ABSTRACT 

 

Rouse-CCR tube model for linear entangled polymers with finite extensibility 
Recently, Graham et al. [1] proposed a complete molecular theory for fast flows of 
entangled polymer melts that does not need decoupling approximation, which leads to 
the averages for orientation tensor and chain stretching.  The resulting model includes 
the processes of reptation, convective constraint release (CCR), reptation-driven 
constraint release, chain stretch and contour length fluctuations (CLF).  The theory, 
however, is too complicated to be used as such within numerical codes for complex 
flow simulations.  Likhtman and Graham [2] derived from the full theory a simplified 
constitutive equation, which they called the Rolie-Poly equation, standing for Rouse 
linear entangled polymers.  We want to emphasize here that neither theories have finite 
extensibility included, which would limit the degree of strain hardening in the stretching 
regime.  In fact, non-Gaussian behavior cannot be ignored in fast flows, when chains 
stretch significantly.  In order to account for finite extensibility of polymer chains into 
the original Rolie-Poly equation, we require that, in the absence of any other 
mechanisms, the trace of the original equation leads to the relaxation for the stretch 
similar to the MLD model [3].  We then write the non-Gaussian Rolie-Poly constitutive 
equation, which account for finite extensibility of polymer chains, in the form 
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where  is the transpose of velocity gradient tensor and the tensor function, f, is 
now given by 
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Here τd is the fixed-tube disengagement time or reptation time, τR is the longest Rouse 
time or stretch time, β is the CCR coefficient analogous to the coefficient introduced by 
Marrucci in his original CCR paper [4], δ a negative power which can be obtained by 
fitting to the full theory, 3/σtr=λ  is the chain stretch ratio and ks(λ) is the 
nonlinearity of the spring coefficient accounting for the finite extensibility of polymer 
chains, equals unity for linear springs and becomes much greater than unity as the 
spring becomes nearly fully stretched.  In the limit of large stretch, in the absence of any 
other mechanisms, retraction (the trace of Eq. 1) leads to the desired following 
relaxation for the stretch 
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This form was used in the MLD model with finite extensibility [3].  Note that in the 
limit of linear spring, ks(λ) remains unity, Eqs. 1-2 reduce to the original Rolie-Poly 
constitutive equation.  The nonlinear spring coefficient is approximated by the 
normalized Padé inverse Langevin function [3], i.e., 
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where,  λmax, is the maximum stretch ratio.  In extensional flows at large strain rates, 
when λ approaches λmax, the linear spring, ks, grows rapidly, approaching a singularity.  
Thus, the effective stretch relaxation time, τeff=τR/ks, is considerably reduced and the 
evolution equation for the conformation tensor σ becomes stiff.  The constitutive 
equation is completed by specifying the relationship between the polymer stress τp and 
the conformation tensor σ.  For the non-Gaussian chain we write 
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where η0 is the zero-shear rate viscosity.  As noted by Ghosh et al. [5], the inverse 
Langevin force law, obtained from equilibrium statistical mechanics, should be used 
with caution in nonequilibrium situations.  Only when the time scale of the deformation 
is much longer than the relaxation time scale of the entire chain will the chain unravel 
reversibly.  In strong extensional flows, this condition is violated, and stress-
birefringence hysteresis is observed. 
 



 

Matrix-logarithm of the conformation tensor 
There is growing numerical evidence that catastrophic breakdown of viscoelastic 
problems may be caused by the failure of polynomial based approximations to properly 
represent exponential profiles developed by the conformation tensor near stagnation 
points or in regions of high deformation rate.  Fattal and Kupferman [6] resolved that 
difficulty through the transformation of differential constitutive models into an equation 
for the matrix logarithm of the conformation tensor, which we now give in the general 
context of the Rolie-Poly model with finite extensibility. 
 
To derive an evolution equation for the logarithm of the conformation tensor σ, which 
we denote, σψ log= , we follow the method of Hulsen et al. [7] based on the evolution 
of the principal axes of the deformation tensor and derive the equations in the tensorial 
form.  The diagonalizing transformation of the conformation tensor σ, can be written as 
 

T

33

22

11
T

~   0    0
0  ~   0
0    0  ~

~ RRRR
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

σ
σ

σ
== σσ .       (6) 

 
Here σ~  is a diagonal matrix whose diagonal elements, kkσ~ , are eigenvalues of σ and R 
is an orthogonal tensor whose columns are eigenvectors of σ.  The matrix logarithm of 
the conformation tensor can then be written as 
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form which we derive (after some manipulations) the evolution equation for the matrix 
logarithm of the conformation tensor, ψ, in the following form 
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The diagonal and off-diagonal components of the tensor N~  are defined, respectively, by 
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In the limit that kkmm

~~ σ→σ , we get from Eq. (10) 
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Finally, the equations governing the conservation of mass and transport of momentum 
are, for viscoelastic incompressible flow, 
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Here u is the fluid velocity, ρ the fluid density and p the hydrodynamic pressure.  The 
extra stress tensor has been split into a polymeric contribution τp and a solvent 
contribution with ηs the solvent viscosity and d is the rate-of-deformation tensor defined 
by 
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The problem is now to solve the set of nonlinear partial differential equations consisting 
of Eqs. (12)-(14) and (8) with appropriate boundary conditions. 
 
At each time step the resolution is performed in a decoupled fashion using an iterative 
scheme.  The momentum and the continuity equations are first solved as a saddle-point 
problem, with the viscoelastic stress treated as a given body force, and the constitutive 
equation is then integrated with known kinematics.  Implicit Euler approximation to the 
time derivative in the momentum and constitutive equations is used.  A fixed-point 
algorithm is used to iterate between the solution of the momentum and constitutive 
equations at each time step, thereby making the overall algorithm coupled in a 
segregated manner.  The stabilized discrete elastic viscous stress splitting (DEVSS-G) 
method [8] and stabilized finite element methods (GLS, SUPG) are used to carry out 
three-dimensional time-dependent simulations.  Such stabilized method allows the use 
of velocity and pressure interpolants that do not satisfy the Babuska-Brezzi condition 
such as the linear equal order interpolation functions.  These elements are both 
computationally effective and easy to implement, especially for three-dimensional 
applications.  The resulting formulation is well posed.  Computations are conducted 
using our parallel computation framework.  The practical utility and effectiveness of the 
proposed numerical scheme is demonstrated by solving fully three-dimensional 
constriction flow. 
 

Uniaxial extensional flow 
We here perform a quantitative comparison with the original Rolie-Poly model.  We 
further include in these comparisons results of the MLD model from Ye et al. [3] and 
experiments [3].  The polymer used is a nearly monodisperse linear polystyrene sample 
(L289) [3].  The maximum stretch ratio was adjusted arbitrarily to 10.  The steady state 
values of the extensional stress are shown in Fig. 1.  In addition, we show the prediction 
of the MLD model.  At low strain rate for which 1≤Rτε& , predictions are in good 
agreement with experimental data.  In the stretching regime, 1>Rτε& , the original 
Rolie-Poly fails, since it omits chain finite extensibility effects.  Comparison with 
original Rolie-Poly model for the steady state extensional viscosity is shown in Fig. 2.  
As noted by Ye et al. [3], the initial drop from the Newtonian value is due to tube 
orientation in the elongation direction.  As strain rates increase ( 1>Rτε& ), chain stretch 
makes the viscosity increase.  It is shown in Fig. 2 that the extensional viscosity is 



 

constant since stress is linear in the rate of deformation.  The extensional viscosity 
reaches a final constant value due to finite extensibility. 
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Fig. 1.  Prediction of steady state extensional stress compared to original Rolie-Poly 

model, MLD model [3] and experimental data [3]. 
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Fig. 2.  Steady-state extensional viscosity predictions of the Rolie-Poly models with and 

without finite extensibility. 
 

Star-tup of flow through an axisymmetric 4:1:4 constriction 
The material used is the same monodisperse polystyrene used in the uniaxial 
extensional flow.  The maximum stretch ratio was arbitrarily reduced to 5.  The choice 
of a small value was made in order to mimic dissipative stress after only a small degree 
of stretch.  Starting from rest and using time-independent (static) inlet boundary 
conditions, we obtained results through a true three-dimensional transient development.  
We are therefore able to capture possible flow bifurcations and all the important flow 



 

features.  The temporal evolution of the stretch ratio and the vortex are shown in Figs. 3 
and 4.  The overshoot in the stretch is clearly exhibited in Fig. 3(b) in the constriction 
region, dominated by strong shear flow.  We also observe that the stretch ratio becomes 
smaller than unity downstream of the constriction, as a result of biaxial extension and 
relaxation.  There is also a clear evidence of a lip vortex growth (Fig. 3, t = 0.3 s and 0.5 
s), stretching from re-entrant corner.  Our simulations suggest that inertia is not an 
essential ingredient for the appearance of the lip vortex in this constriction flow. 
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(b) 

Fig. 3.  Transient and steady-state stretch ratio during the start-up flow through an 
axisymmetric 4:1:4 constriction: (a) along the center line and (b) near the wall.  z=0 

corresponds to the upstream re-entrant corner. 
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Fig. 4.  Temporal evolution of the stretch ratio and vortex during the start-up flow. 
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