## SOLID WITH AN IMMERSED THIN BEAM

| <sup>1</sup> Department of Engineering | <sup>2</sup> Institute of Hydraulic Engineering          |
|----------------------------------------|----------------------------------------------------------|
| University of Cambridge                | Universität Stuttgart                                    |
| Trumpington Street                     | Pfaffenwaldring 61                                       |
| Cambridge, CB2 1 PZ, UK                | 70569 Stuttgart, Germany                                 |
| fc286@eng.cam.ac.uk                    | bernd@iws.uni-stuttgart.de                               |
| <sup>3</sup> Department of Mathematics | <sup>4</sup> Institute of Applied Analysis and Numerical |
| The Chinese University of Hong Kong    | Simulation, Universität Stuttgart                        |
| Shatin, N.T.                           | Pfaffenwaldring 57                                       |
| Hong Kong, China                       | 70569 Stuttgart, Germany                                 |
| jzli@math.cuhk.edu.hk                  | wohlmuth@mathematik.uni-stuttgart.de                     |
|                                        |                                                          |

Fehmi Cirak<sup>1</sup>, \*Bernd Flemisch<sup>2</sup>, Jingzhi Li<sup>3</sup>, and Barbara Wohlmuth<sup>4</sup>

Key Words: Structural Mechanics, Coupled Problems, Non-matching Grids, Nitsche method.

## ABSTRACT

**Problem description** We consider the elasticity problem of three domains with different compliances as shown in the left picture of Figure 1. The domain  $\omega$  in the middle is thin and has a significantly



Figure 1: A stiff solid with thickness h (center) embedded between two compliant solids and its discretization with finite elements.

different compliance than the two adjacent domains  $\Omega^+$  and  $\Omega^-$ , so that it can be approximated as a beam. Hence, the overall problem can be considered as a beam  $\omega$  embedded in a two dimensional solid  $\Omega = \Omega^+ \cup \Omega^-$  (Fig. 1, middle). The governing equations for the solid  $\Omega$  are

$$-\operatorname{div} \sigma(\boldsymbol{u}) = \boldsymbol{f}, \quad \sigma(\boldsymbol{u}) = C(\epsilon(\boldsymbol{u})), \quad \epsilon(\boldsymbol{u}) = \frac{1}{2} \left( \operatorname{grad} \boldsymbol{u} + \operatorname{grad} \boldsymbol{u}^{\mathrm{T}} \right), \tag{1}$$

where  $\sigma$  is the stress tensor, f the external load vector,  $\epsilon$  the strain tensor, u the displacement vector, and  $C(\cdot)$  realizes the usual linear stress-strain relationship. For brevity, it is assumed that the beam has

zero bending stiffness, which results in the governing equations for the beam:

$$-T'(w) = q, \quad T(w) = D(\chi(w)), \quad \chi(w) = w',$$
(2)

where T is the axial force,  $\chi$  the axial strain, w the axial displacements, and  $\cdot'$  denotes differentiation in axial direction. At the beam-solid interface the displacement continuity conditions are

$$[\boldsymbol{u} \cdot \boldsymbol{n}] = 0, \qquad \boldsymbol{u}^{i} \cdot \boldsymbol{t} = \boldsymbol{w}, \ i = +, -, \tag{3}$$

where  $[\cdot]$  denotes the jump over the beam. The tangential and normal traction continuity equations are

$$[\sigma_n(\boldsymbol{u})] = 0, \qquad [\sigma_t(\boldsymbol{u})] = q, \tag{4}$$

where  $\sigma_n$  and  $\sigma_t$  is the normal and tangential component of the surface traction  $\sigma n$ , respectively. Since bending effects are neglected, the normal tractions have to be continuous across the solid-beam interface. Physical considerations and dimensional analysis explain the fact that the jump in the tangential traction is equal to the change of the beam axial force, resulting in a at first glance quite unusual coupling of the solid Neumann data with the beam source term.

**Weak formulation** We aim to minimize the following energy functional (neglecting any boundary conditions):

$$\Pi(\boldsymbol{u}, w) = \Pi_{\Omega}(\boldsymbol{u}, w) + \Pi_{\Gamma}(\boldsymbol{u}, w),$$
  

$$\Pi_{\Omega}(\boldsymbol{u}, w) = \frac{1}{2}(\sigma(\boldsymbol{u}), \epsilon(\boldsymbol{u}))_{\Omega} - (\boldsymbol{f}, \boldsymbol{u})_{\Omega} + \frac{1}{2} \|\lambda[\boldsymbol{u} \cdot \boldsymbol{n}]\|_{\Gamma}^{2} - (\sigma_{n}(\boldsymbol{u}), [\boldsymbol{u} \cdot \boldsymbol{n}])_{\Gamma}$$
  

$$+ \frac{1}{2} \sum_{i} \|\lambda(\boldsymbol{u}^{i} \cdot \boldsymbol{t} - w)\|_{\Gamma}^{2} - \sum_{i} (\sigma_{t}(\boldsymbol{u}^{i}), \boldsymbol{u}^{i} \cdot \boldsymbol{t} - w)_{\Gamma},$$
  

$$\Pi_{\Gamma}(\boldsymbol{u}, w) = \frac{1}{2}(T(w), \chi(w))_{\Gamma} - ([\sigma_{t}(\boldsymbol{u})], w)_{\Gamma}.$$

In particular, the displacement coupling condition (3) is enforced by penalization with a suitable parameter  $\lambda$ , where the terms involving  $\sigma_n$  and  $\sigma_t$  in the definition of  $\Pi_{\Omega}$  have to be added for consistency. The traction coupling condition (4) is realized by replacing the beam source term q by  $[\sigma_t(\boldsymbol{u})]$ .

**Discretization and loose coupling procedure** For the discretization, we use a triangulation of  $\Omega$  which does not need to take into account the presence of the beam, see Figure 1 (right). For the solution of the fully coupled system, we use the following loose coupling approach:

for k = 0, ... do 1. Given  $w^k$ , calculate  $u^{k+1}$  by minimizing  $\Pi_{\Omega}(u, w^k)$ . 2. Given  $u^{k+1}$ , calculate  $w^{k+1}$  by minimizing  $\Pi_{\Gamma}(u^{k+1}, w)$ . end for

The first step requires to solve a discrete linear elasticity problem with given Dirichlet conditions on an internal interface. With the employed Nitsche type penalization, this results in a modified version of the method proposed in [1]. The second step just involves the solution of the discrete beam equation with given source term. In both steps, special care has to be taken to evaluate a discrete function from one mesh with respect to the other mesh.

**Outlook** The proposed method is to be seen as an intermediate step towards the simulation of fluidstructure interaction problems, where the structure can be modelled using a reduced dimension. Here, the analogous approach is especially attractive if the motion of the structure has to be taken into account.

## REFERENCES

 A. Hansbo and P. Hansbo. "A finite element method for the simulation of strong and weak discontinuities in solid mechanics". *Comput. Methods Appl. Mech. Engrg.*, Vol. 193, 3523– 3540, 2004.