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ABSTRACT

In this work we discuss the instability encountered in flows dominated by the Coriolis force and propose
a numerical strategy to cope with this problem. It is an application of the ideas first introduced in [1]
to flows in shallow waters where the rotating terms are important, a typical situation in oceanographic
flows.

In the first part, we obtain the expression for the acceleration of a fluid particle when it is referred
to a rotating frame of reference. This development is absolutely standard and basic, but will serve to
motivate the numerical method introduced in the third part of the presentation.

Once the shallow water equations are written in a rotating reference system and discretized in time, a
simple energy estimate is obtained. This is a standard development, but serves to present the instability
encountered when rotation dominates at the same point and with the same arguments as the instabilities
due to convection dominated flows.

As an extension of the well known Characteristic Galerkin Method, the Inertial Galerkin Method is then
introduced as a remedy to deal with the instabilities due to convection and rotation dominated flows at
the same time.

If ei(t) is thei-th component of the rotating reference system (expressed in terms on an inertial one) and
ui(x(X, t), t) is thei-th velocity component of the particle that at timet = 0 is located at the spatial
point X, beingx(X, t) the trajectory of this particle, the essential idea of the method is to discretize
the total time derivative

d
dt

(ui(x(X, t), t)ei(t)) (1)

In the case the basis does not depend on time, this idea is the starting point of the characteristic Galerkin
or Lagrange-Galerkin method. In the case of shallow water flows, the derivative (1) leads to
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whereui is thei-th depth averaged velocity andf is the Coriolis parameter.



Even though (1) and (2) are two expressions of the same temporal derivative, the time discretization of
(1) or of the temporal derivative in (2) lead to different schemes. If we denote with a superscript the
time step level of a typical finite difference time discretization, a two-step approximation of (1) leads to
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ui(x(X, tn+1), tn+1)ei(tn+1)− ui(x(X, tn), tn)ei(tn)

)
with 0 ≤ θ ≤ 1 andδt being the time step size. Once arrived to this expression, rather than integrating
the equations along the characteristics and referring the time levels to a same inertial basis, a Taylor
expansion is performed to obtain a problem posed in the current reference and the current spatial points.
The outcome is the appearance of some stabilizing terms that will enhance stability.

We present some numerical examples showing the importance of the Coriolis forces in some problems
of interest, as well as the local instabilities they may lead to if they are not properly accounted for in the
numerical discretization of the equations.
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