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ABSTRACT

We analyze the numerical treatment of a viscoplastic material model of overstress type. The mate-
rial model is based on a double multiplicative split (see [4], [6]) and takes the nonlinear kinematic
hardening into account. According to the kinematic assumptions of the double multiplicative split,
symmetric tensor-valued internal variables Ci,Cii ∈ Sym describe the current state of the material.
For a given deformation history {C(t)}t∈[0,T ], the following thermodynamically consistent evolution
equations govern the dissipative processes at the material point:

Ċi = fi(C(t),Ci,Cii) Ci, Ċii = fii(C(t),Ci,Cii) Cii. (1)

Under appropriate initial conditions, the exact solution of (1) has the following geometric property: Ci
and Cii lie on the manifold M , defined by

M :=
{
B ∈ Sym : detB = 1

}
. (2)

In particular, this implies that the inelastic flow is incompressible: detCi = 1, which is a typical feature
of metal plasticity. We note that some strong local nonlinearities are peculiar to the problem (1). Partic-
ulary, the forcing function C(t) is continuous, but not smooth. Another source of the strong nonlinearity
is due to the distinction into elastic and inelastic material behaviour.

We discuss the implementation of the material model to the displacement-based finite element method
(FEM). A global implicit time stepping procedure in the context of FEM requires a proper stress al-
gorithm, which is based on the implicit integration of (1). We show that the Modified Euler-Backward
Method (MEBM) (see [3], [6]) and the implicit Exponential Method (EM) (see [5], [1]) can be used
to construct a geometric integrator of (1), such that the numerical solution remains on M × M . The
excellent accuracy and convergence characteristics of MEBM and EM are demonstrated via special
numerical tests.



It is axiomatic that if the numerical solution leaves the manifold M ×M , it will introduce non-physical
degrees of freedom, and some structural features of the flow will be lost. In this connection, we assess
those factors that result in a more accurate computations compared to the classical Euler-Backward
method, especially when integrating with big time steps and for long times:

• The numerical error of the classical Euler-Backward method, related to the violation of incom-
pressibility condition, tends to accumulate over time (see, for example, [1], [3]).

• If the incompressibility constraint is violated, the straight-forward computation of stresses will
result in a wrong hydrostatic stress. In that case, corrections of the hydrostatic stress are required.

• Using a series of numerical tests of MEBM and EM, we show that the the numerical error is not
accumulated over time.

• The strong local nonlinearities may lead to essential integration errors. Once committed, these
errors are reduced with time if the geometric integrators are implemented.

REFERENCES

[1] W. Dettmer, S. Reese. “On the theoretical and numerical modelling of Armstrong-Frederick
kinematic hardening in the finite strain regime”. Comp. Meth. in Appl. Mech. and Eng., Vol.
193, 87–116, 2004.

[2] E. Hairer, C. Lubich and G. Wanner. Geometric Numerical Integration. Structure Preserving
Algorithms for Ordinary Differential Equations., 2nd. Edition, Springer, 2004.

[3] D. Helm. “Stress computation in finite thermoviscoplasticity”. Int. J. of Plast., Vol. 22,
1699–1721, 2006.

[4] A. Lion. “Constitutive modelling in finite thermoviscoplasticity: a physical approach based
on nonlinear rheological elements”. Int. J. of Plast., Vol. 16, 469–494, 2000.

[5] C. Miehe, E. Stein. “A canonical model of multiplicative elasto-plasticity: formulation and
aspects of the numerical implementation”. Europ. J. of Mech. A/Solids., Vol. 11, 25–43,
1992.

[6] A. V. Shutov, R. Kreißig “Finite strain viscoplasticity with nonlinear kinematic hardening:
Phenomenological modeling and time integration”. Comp. Meth. in Appl. Mech. and Eng.,
accepted for publication, 2007.


