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ABSTRACT

The characterization of dynamic behaviour of the structures (e.g. car engines) plays a vital role in the
response prediction, health monitoring, the control of acoustic standard, and so on. The Frequency Re-
sponse Function (FRF) is one way to describe such behaviour and can be used for identifying a load
on structures. The variation of structural parameters of a family of structures leads to the uncertainty
of FRF which is described through probabilistic models that can be tuned when dealing with a specific
structure, thanks to some measurements. The enhanced characterization of FRF can provide a founda-
tion for the source identification on other structures.

The Bayesian framework is adopted to that purpose since it offers a rigorous foundation for inference
from noisy data and uncertain forward models, a natural mechanism for incorporating prior information,
and a quantitative assessment of uncertainty in the inferred results [1]. The probability distributions of
the parameters of transfer function, where natural frequency ω, damping ratio η and modal residue are of
interest, can be updated by the prior ones combining experimental data within the Bayesian framework.
The all prior information given is listed as following:

• the measurements of the load F and the response Y on a frequency range [ωi, ωs]

• an additive noise model of the system is adopted based on FRF H:

Y (ω) = H(ω;αH))F (ω) + N(ω) ω ∈ [ωi, ωs] (1)

• a prior information on αH , described through its probability density.

• a prior information about the uncertainties on the measurement and the lack of accuracy of the
model, described through the normal distribution of N .

One of the greatest difficulties is how to construct the prior information about the numerous correlated
modal parameters αH of real complicated structures. The uncertainty of modal parameters physically



comes from the variation of structural parameters like material and geometrical parameters. The prior
information of αH is therefore constructed based on the uncertain parameters of the structural system
through a finite element model, where uncertain model parameters αm are described through a Poly-
nomial Chaos expansion which is an effective way for propagating the uncertainty through the forward
model[2]. The PC expansions of αH are hereby obtained through a non-intrusive formulation. Finally,
a surrogate posterior density distribution can be derived from the one of model parameters by substitut-
ing all the random variables with their expansions of polynomial chaos within the Bayesian framework,
which makes sampling from posterior probability distribution be inexpensive.

Sampling from the surrogate posterior probability distribution to obtain the posterior probability dis-
tributions of modal parameters is another central task. However the surrogate posterior density distri-
bution is usually of multi-modes because of insufficient data relative to the desired model complexity.
An evolutionary Markov chain and Monte Carlo method based on population [3] is adopted, which
has the effective proposal mechanism and mixing behaviour. In addition, the optimal values of modal
parameters are given as the byproduct of the evolutionary Markov Chain Monte Carlo method and their
marginal posterior probability distributions are estimated by kernel density estimation.

modal parameters prior values true values posterior values relative errors(per 100)
ω1 14.45 16.36 16.36 ≤ 10−2

ω2 90.55 102.53 102.53 ≤ 10−2

ω3 253.60 287.14 287.15 ≤ 10−2

ω4 497.30 563.07 563.09 ≤ 10−2

ω5 823.36 932.26 932.28 ≤ 10−2

ω6 1233.50 1396.63 1396.65 ≤ 10−2

η1 [0, 0.1] 6.4e-4 5.4e-4 15.6
η2 [0, 0.1] 3.8e-4 4.0e-4 5.3
η3 [0, 0.1] 8.3e-4 9.3e-4 12.0
η4 [0, 0.1] 1.6e-3 1.8e-3 12.5
η5 [0, 0.1] 2.6e-3 2.9e-3 11.5

Table 1: Results of identification of first six modal parameters for cantilever beam, where elastic mod-
ulus and density are uncertain, level of noise: SNR = 20dB. unit of ω: Hz

The identification of transfer function is illustrated with an numerical example of cantilever beam (see
table 1). The results indicate that Bayesian inference provides a strong framework for the problem of
the inference of transfer function, the optimal transfer function and its probability distribution provide
the foundation for the source identification within the Bayesian framework.
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