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ABSTRACT

The fast multipole method (FMM) is an O(N) method to calculate sums involving the kernel 1/r:

φi =
∑
j 6=i

σj

|ri − rj |

This is a very popular method with applications in many fields such as the N body problem, molecular
dynamics, boundary integral equations. . . The FMM relies on analytical formulae to approximate (in
a suitable sense) the kernel 1/r for large r. Even though many such approximations, often involving
Legendre polynomials, Spherical Harmonics and Bessel functions, have been derived for many appli-
cations, many users find it difficult or cumbersome to derive new expansions for new kernels, assuming
such expansions can be found analytically. Even when such expansions can be obtained, the implemen-
tation of the method itself is a challenge. It is therefore desirable to derive a “black-box” FMM which
is applicable to arbitrary kernels. Applying the method should then simply be a matter of installing a
library and providing a user-defined routine to evaluate the kernel at a given point. The complexity of
the method would be completely hidden from the end-user. This is the goal of this project.

We are proposing a new O(N) method, bbFMM, applicable to kernels which are smooth for large r.
The exact condition will be provided below. Our method has several advantages:

• it is optimal in the sense that the smallest possible number of coefficients are used to represent
the kernel for a given error ε.

• the pre-computing cost is O(1) for homogeneous kernels and grows like O(lnN) in the general
case.

• it is applicable to periodic and non-periodic cases.

• it is adaptive in the sense that the tree can be refined locally to account for clusters of points with
a higher density.



• it is anisotropic in the sense that the computational cost is reduced if the points lie on a sub-
manifold (surface or line).

We briefly describe some of the components of bbFMM. Assume we want to compute the following
general sum:

φi =
∑
j 6=i

K(ri, rj) σj

bbFMM is based on approximating the kernel using Chebyshev polynomials. Any smooth function
f(x) can be approximated on the interval [−1, 1] using f(x) ≈

∑p
k=1 wk(x)f(Xk) with

wk(x) =
2
p

p∑
m=1

Tm−1(Xk)Tm−1(x)− 1
p

where Tm(x) is a Chebyshev polynomial of order m and Xk are the zeros of Tp(x). Assume now that
we want to approximate K(x, y) for x and y in the interval [−1, 1], the following approximation can be
used (assuming K is smooth in this region): K(x, y) ≈

∑
k,l wk(x)wl(y)K(Xk, Xl). For two clusters

of N points xi and yj , an O(N) method can then be constructed in 3 steps:
1. Calculate equivalent charges at node Xl: Ql =

∑N
j=1 wl(yj)σj .

2. Calculate the potential at Chebyshev node Xk: φ(Xk) =
∑p

l=1 K(Xk, Xl)Ql.
3. Calculate the potential at the N nodes xi: φi =

∑p
k=1 wk(xi)φ(Xk).

Each step has a computational cost of either O(pN) or O(p2). If a tree data structure is used, as in the
FMM, the method can be applied to an arbitrary distribution of points ri. The condition on kernel K
for the method to work is that there should exist an integer p(ε) such that the error using the Chebyshev
interpolation of order p is smaller than ε at all levels in the tree. This is true for most kernels but not for
oscillatory kernels such as cos(r)/r.

In addition to the Chebyshev interpolation, the singular value decomposition (SVD) was used to reduce
the cost of the second step,

∑
l K(Xk, Xl)Ql. This does not change the scaling O(N) of the method

but reduces the “constant” in front of N . This also guarantees the optimality of the algorithm since the
SVD can be shown to provide the approximation with smallest rank given an error ε. Other methods
have used the SVD previously to obtain a fast O(N) method. Our approach, bbFMM, has the advantage
of requiring a small pre-processing time since the SVD is only computed locally at each level (and not
globally as is sometimes done).

The method was developed and applied to different kernels including 1/rp and Stokes’ kernel. The
scaling O(N) and the accuracy of the method was verified numerically. We can prove and observed
a spectral convergence, e.g. the error decays exponentially fast with the number of terms used in the
expansion (parameter p above).

REFERENCES

[1] E. Darve, “The Fast Multipole Method (I): error analysis and asymptotic complexity”, SIAM
Num. Anal., Vol. 38, pp. 98-128, (2000).

[2] E. Darve, “The Fast Multipole Method: numerical implementation”, J. Comp. Phys., Vol.
160, pp. 195-240, (2000).
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