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ABSTRACT

Developments in computational aeroelasticity have canatxd on time—domain based approaches.
Advancing a coupled full-order aerodynamic/structuratem in time gives information about the sys-
tem’s stability due to the response to an initial disturleari® overcome the significant computational
costs, in particular to solve for the unsteady, non—linesrdonic aerodynamics, alternative approaches
involving reduced—order modelling have been consider&tie method employed in this work uses
the concepts of dynamic systems theory to characterizetahdity of complex systems. The BIFOR
solver is based on the bifurcation theory and consists ekthmain parts; i.e. a full-order high—fidelity
steady state solver (currently based on the Euler equatiarshifted inverse power method (IPM) al-
gorithm and a Newton eigenvalue (NEV) solver. The IPM presgién appropriate initial guess of the
eigenpair as input to the NEV which then calculates the e@eers of the Jacobian matrix of the aero-
dynamic/structural equilibrium solution for the diffeteralues of a bifurcation parameter. According
to dynamic systems theory, stability is determined by a tnegaeal part for all the Jacobian matrix’s
eigenvalues. The calculation of the instability point ise&sary but knowledge of the type of the insta-
bility is also required. Therefore, an extension to the BR=$»lver utilizing the center manifold theory
has the ability to predict limit—cycle behavior after théubtatior?.

An application considers the 'typical section’ airfoil. @hsogai test case which examines a
NACA 64A010 airfoil at zero mean angle of attack, is a benclkm@ase used to demonstrate the
performance of a numerical scheme in characterizing tH@lisgabehavior. Figure 1 presents a com-
parison between results of different numerical methodsilé\there is an overall good agreement of
the BIFOR results compared to the other numerical solutithressuperiority of the current method is
reflected by the CPU performance (resolution of the instglbbundary). Simulations of the stability
behavior at 200 Mach numbers were conducted to form therifitesl curve in about 3.5 hours of CPU
time on a single processor. However, a numerically createabgh oscillatory trend in the instability
boundary has been observed starting for Mach numbers higéeithe critical Mach number. This has
been discussed for a NACA 0012 airfoil configuration in therent study (Fig. 2). While the Mach
number increment can be decreased easily by orders of mdgriand thus approaches to be contin-
uous), the formed shock wave along the airfoil can not movgigoously but is restricted to the grid
resolution. Steady state flow characteristics as well as-timarching results have been investigated.
The fine resolution of the instability boundary realizedhistwork means that this oscillatory effect
has not been reported previously.
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Figure 1: Isogai test case
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(a) Instability boundary — grid influence (b) Close—up view

Figure 2: Oscillatory instability boundary



