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ABSTRACT

Developments in computational aeroelasticity have concentrated on time–domain based approaches.
Advancing a coupled full–order aerodynamic/structural system in time gives information about the sys-
tem’s stability due to the response to an initial disturbance. To overcome the significant computational
costs, in particular to solve for the unsteady, non–linear transonic aerodynamics, alternative approaches
involving reduced–order modelling have been considered1 . The method employed in this work uses
the concepts of dynamic systems theory to characterize the stability of complex systems. The BIFOR
solver is based on the bifurcation theory and consists of three main parts; i.e. a full–order high–fidelity
steady state solver (currently based on the Euler equations), a shifted inverse power method (IPM) al-
gorithm and a Newton eigenvalue (NEV) solver. The IPM provides an appropriate initial guess of the
eigenpair as input to the NEV which then calculates the eigenvalues of the Jacobian matrix of the aero-
dynamic/structural equilibrium solution for the different values of a bifurcation parameter. According
to dynamic systems theory, stability is determined by a negative real part for all the Jacobian matrix’s
eigenvalues. The calculation of the instability point is necessary but knowledge of the type of the insta-
bility is also required. Therefore, an extension to the BIFOR solver utilizing the center manifold theory
has the ability to predict limit–cycle behavior after the bifurcation2 .

An application considers the ’typical section’ airfoil. The Isogai test case3, which examines a
NACA 64A010 airfoil at zero mean angle of attack, is a benchmark case used to demonstrate the
performance of a numerical scheme in characterizing the stability behavior. Figure 1 presents a com-
parison between results of different numerical methods. While there is an overall good agreement of
the BIFOR results compared to the other numerical solutions, the superiority of the current method is
reflected by the CPU performance (resolution of the instability boundary). Simulations of the stability
behavior at 200 Mach numbers were conducted to form the illustrated curve in about 3.5 hours of CPU
time on a single processor. However, a numerically created smooth oscillatory trend in the instability
boundary has been observed starting for Mach numbers higherthan the critical Mach number. This has
been discussed for a NACA 0012 airfoil configuration in the current study (Fig. 2). While the Mach
number increment can be decreased easily by orders of magnitude (and thus approaches to be contin-
uous), the formed shock wave along the airfoil can not move continuously but is restricted to the grid
resolution. Steady state flow characteristics as well as time–marching results have been investigated.
The fine resolution of the instability boundary realized in this work means that this oscillatory effect
has not been reported previously.
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(a) Instability boundary
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(b) Root loci compared to Hall et al4

Figure 1: Isogai test case
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(a) Instability boundary – grid influence
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(b) Close–up view

Figure 2: Oscillatory instability boundary


