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ABSTRACT

To compute seismic wave propagation in alluvial basins, various numerical methods have been pro-
posed: the finite element method, the spectral element method, the finite difference schemes, the finite
volume approaches and the boundary element method (BEM: [2]). The latter is well suited to the com-
putation of seismic wave propagation in that only the domain boundaries (and possibly interfaces) are
discretized, leading to a reduced number of degrees of freedom (DOFs). In traditional BE implemen-
tation the dimensional advantage with respect to domain discretization methods is offset by the fully-
populated nature of the BEM coefficient matrix, with set-up and solution times rapidly increasing with
the problem size N . The solution step may be performed using either direct solvers (typically based on
a LU factorization) or iterative solvers (typically GMRES). The solution time is O(N3) for the former,
and O(N2) per iteration for the latter. Since the overall number of iterations is usually much smaller
than N , iterative solvers are preferable for large BEM models. Because of the large memory costs, large
N (N > 104 on a single proc. PC) prohibit the use of traditional BEM implementation. As a result, the
resolution of realistic seismological problems (geometry complexity, heterogeneity) is limited by the
number of DOFs that can be solved on a given computer. Moreover, because the problem is solved in
the frequency domain, the mesh size is linked to the problem characteristic wavelength. Consequently,
the frequency range is also limited by the use of the traditional BEM.

Methodology. Each GMRES iteration requires the computation of one matrix-vector product, hence
the O(N2) computing time since the matrix is full. In other areas where the BEM is used (electro-
magnetism, acoustics,. . .), considerable speedup of solution time and decrease of memory requirements
have been achieved through the development, over the last decade, of the Fast Multipole Method (FMM:
[3], [5]). The goal of the FMM is to speed up the matrix-vector product computation. This is achieved
by (i) using a multipole expansion of the relevant Green’s tensor, which (unlike in the standard BEM)
allows to re-use element integrals for all collocation points, and (ii) defining a (recursive, multi-level)
partition of the region of space enclosing the domain boundary of interest into cubic cells, allowing
to optimally cluster influence computations according to the ratio between cluster size and distances
between two such clusters. Moreover, the governing matrix is never explicitly formed, which leads to



a storage requirement well below the O(N2) memory necessary for holding the complete matrix. The
FMM-accelerated BEM therefore achieves substantial savings in both CPU time and memory.

Outline and results. In this work, the FMM is extended to the 3-D frequency-domain elastodynamics
and applied to the computation of seismic wave propagation in 3-D [1], a field of application addressed
in only a few other references [4]. This communication is organized as follows. First, the main features
of the elastodynamic FMM-BEM formulation are concisely presented. Then, numerical efficiency and
accuracy are assessed on the basis of numerical results obtained for problems having known solutions
(performed on a single PC computer for problem sizes of up to N = O(106)). In particular, numerical
results are in agreement with the expected theoretical complexity of the FMM-accelerated elastody-
namic BEM. The BEM formulation presented here uses the fundamental solutions of the full space. As
a result, to study the propagation of seismic waves in alluvial basins, it is necessary to use a BE-BE
coupling. The strategy used and results obtained for multi-material (piecewise homogeneous) media is
presented. Finally, the present FMM-BEM is demonstrated on seismology-oriented examples, namely
the study of the diffraction of a plane wave by a canyon or an alluvial basin. The influence of the size
of the meshed part of the free surface is studied, and computations are performed for nondimensional
frequencies higher than those considered in other studies, with which comparisons are made when-
ever possible. Ongoing research includes the formulation of a multipole expansion for the half-space
elastodynamic fundamental solution.
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Figure 1: Diffraction of an incident P plane wave by a semi-spherical alluvial basin of radius R: horizontal
and vertical computed displacement on the free surface plotted against normalized abscissa y/R (normalized
frequency ηP = kP /R = 0.5). Comparison of present FMM solution to results from Sánchez-Sesma [6].

REFERENCES

[1] S. Chaillat, M. Bonnet and J.F. Semblat. “A Fast Multipole Method formulation for 3-D elastodynamics in the frequency
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