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ABSTRACT

The accurate and reliable simulation of wave phenomena is offundamental importance in a wide range
of engineering applications such as fiber optics, wireless communication, sonar and radar technology,
non-invasive testing and imaging. To address the wide rangeof difficulties involved, we consider sym-
metric interior penalty (IP) discontinuous Galerkin (DG) methods, which easily handle elements of
various types and shapes, irregular non-matching grids, and even locally varying polynomial order. In
[2,3,4] we prove that these methods yield optimal convergence in theL2-norm and in the enery norm,
both for the wave equation and for Maxwell’s equations in second-order form. Moreover, in contrast to
standard conforming finite element methods, IP-DG methods yield an essentially diagonal mass matrix;
hence, when coupled with explicit time integration, the overall numerical scheme remains truly explicit
in time.

In the presence of complex geometry, adaptivity and mesh refinement are certainly key for the efficient
numerical solution of partial differential equations. However, locally refined meshes impose severe
stability constraints on explicit time-stepping schemes,where the maximal time-step allowed by a CFL
condition is dictated by the smallest elements in the mesh. When mesh refinement is restricted to a
small region, the use of implicit methods, or a very small time step in the entire computational domain,
are very high a price to pay. To overcome that stability restriction, we propose local time-stepping
schemes, which allow arbitrarily small time steps where small elements in the mesh are located [1].
When combined with a symmetric finite element discretization in space with an essentially diagonal
mass matrix, the resulting fully discrete scheme is explicit and exactly conserves a discrete energy.
Starting from the standard second order “leap-frog” scheme, we derive time integrators of arbitrary
order of convergence. These time-stepping schemes are inspired from symplectic and time reversible
integrators for the numerical time integration of Hamiltonian dynamical systems [5].

To illustrate the versatility of our approach, we consider acomputational domain that consists of two
rectangles connected by a very narrow channel. We use the symmetric IP-DG formulation [4] withP 3

elements on a triangular mesh, which is highly refined insidethe narrow region, as shown in the right
frame of Fig. 1. Since the typical mesh size inside the refinedregion is aboutp = 17 times smaller than
in the surrounding coarse region, we takep local time steps of size∆τ = ∆t/p for every time step∆t.



Figure 1: Left: The solution at timet = 0.2 . Right: the highly refined mesh inside the narrow channel.

When the “fine” region, where local time-steps are used, slightly extends into the surrounding “coarse”
region of the mesh, we find that the resulting numerical scheme permits the use of the optimal maximal
time-step, dictated by the coarse mesh size.

As shown in Fig. 1, the wave is initiated by a pulse in the upperregion, which propagates outward
until it impinges on the boundaries. A fraction of the wave then penetrates the channel and generates
a circular outgoing wave as it reaches the opposite lower region. Further reflections occur as the wave
moves back and forth inside the channel, subsequently generating multiple circular waves in the upper
and lower domains.
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