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ABSTRACT

An Adaptive Stochastic Finite Elements approach for unsteady problems is developed. Unsteady so-
lutions of dynamical systems are known to be sensitive to small input variations. Stochastic Finite
Elements methods [1] usually require a fast increasing number of elements with time to capture the
effect of random input parameters in these time-dependent problems. The resulting large number of
samples required for resolving the long-term asymptotic stochastic behavior, results for computation-
ally intensive fluid-structure interaction simulations in impractically high computational costs. The Un-
steady Adaptive Stochastic Finite Elements (UASFE) formulation proposed in this paper maintains a
constant interpolation accuracy in time with a constant number of samples. The approach is based on a
time-independent parametrization of the sampled time series in terms of frequency, phase, amplitude,
reference value, damping, and higher-period shape function [2]. This parametrization is interpolated
using a robust Adaptive Stochastic Finite Elements method based on Newton-Cotes quadrature in sim-
plex elements [3]. This approach requires a relatively low number of deterministic solves and preserves
monotonicity and optima of the samples. In order to ensure the robustness of the method, (1) the ele-
ments are refined adaptively until convergence is reached in the L∞-norm, and (2) the parametrization
error is computed to determine the time interval in which the UASFE approximation is valid.
Results for a mass-spring-damper system and the Duffing equation with multiple random input param-
eters are presented. For the mass-spring-damper system the effect of positive and negative damping on
the stochastic results is studied, see Figure 1. Input randomness assumed in a combination of the spring
stiffness parameter and the damping parameter shows that a non-zero probability of negative damping
results asymptotically in a diverging output standard deviation. In case of these two random parame-
ters, the required number of samples for a converged UASFE approximation is a factor 2.6 ·103 smaller
than for Monte Carlo simulation. The study of two random initial conditions for the Duffing equation
illustrates that nonlinear dynamical systems with discontinuous solutions can be extremely sensitive to
random initial conditions, see Figure 2. An amplification factor of 52 has been observed for the stan-
dard deviation. In the paper, results for the stochastic bifurcation behavior of a two-degree-of-freedom
elastically mounted airfoil will also be presented.
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(a) UASFE, Ns = 9 samples (b) Monte Carlo, Ns = 1.2 · 105 samples

Figure 1: Two-dimensional response surface of x(t, ω) at tstop = 100 as function of the random stiffness
K(ω) and damping C(ω) by two-dimensional Unsteady Adaptive Stochastic Finite Elements (UASFE)
with Ne = 2 (Nesub

= 46, Ns = 9) and Monte Carlo (MC) simulation with Ns = 1.2 · 105 for the
mass-spring-damper system.

(a) UASFE x(t, ω) (b) MC x(t, ω)

Figure 2: Two-dimensional response surface approximations for x(tstop, ω) as function of random
initial conditions x0(ω) and y0(ω) by Unsteady Adaptive Stochastic Finite Elements (UASFE) with
Ne = 64 (Nesub

= 44, Ns = 151) and Monte Carlo (MC) with Ns = 104 for the Duffing equation.


