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ABSTRACT

In the context of wave propagation simulation, the perfecthtched layer (PML) absorbing boundary
condition has proven to be efficient to absorb non grazinglimce waves and surface waves, but the
classical discrete PML becomes significantly less efficigirazing incidence. This is a severe limita-
tion in the case of thin mesh slices or in the case of sourazgdd close to the absorbing boundaries
or receivers located at large offset. In order to improvedffieciency of PML at grazing incidence, in
Komatitsch and Martin (2007) we derived an unsplit convohal technique (called CPML) for the
staggered-grid finite-difference integration scheme eles extend this CPML method to a variational
version of the seismic wave equation, focussing in padicah the spectral-element method. A hybrid
first/second-order time integration scheme is introdutéging the Newmark time marching scheme,
Festa and Vilotte (2005) have shown that a velocity-stressilation in the PML and a second-order
displacement formulation in the inner computational dommaiatch perfectly at the entrance of the
CPML. The main difference between our unsplit CPML and thé& ggrmulation of the GFPML of
Festa and Vilotte (2005) lies in the fact that memory stoliageduced by 40% in 2D in the CPML
version. In both CPML and GFPML so-called memory variables iavolved and are added to the
velocity and stress fields. In 2D, thirteen arrays (2 comptsef the velocity, 3 components of the
stress tensor, 8 memory variables) are involved for the Clebthpared to 20 arrays for the GFPML.
Furthermore the CPML formulation is easier to implement. aifew benchmarks on thin slices for a
two-layer model in the presence of a free surface.

The snapshots of Figure 1 show that waves can be efficienigrbbd in a heterogeneous isotropic
model in the presence of a free surface. In Figure 2, compagiwith a reference solution illustrate the
high efficiency of the variational CPML even at grazing irerde, since only very small discrepancies
are observed. In this same figure, total energy exhibits parential decay in time over several orders
of magnitude, which shows the stability of the variation&®NML for long simulation times.
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Figure 1: Snapshots of the propagation of P-SV waves exbyed Ricker wavelet source located at
the orange cross in(= 8500 my =2500 m) at the free surface of a 10000 m by 2500 m domain. Two
different materials are in contact at the discontinuityrespnted by the solid black line. CPML layers
are implemented on the right, bottom and left edges. Sn&psine shown at times 0.7 s and 2.8 s. No
significant spurious reflections can be observed, even aingrancidence.
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Figure 2: (Left and middle): Time evolution of the numericallution with CPML (dotted line) for
the vertical component of velocity recorded at the first kee(z =9500 m,y =300 m, green square
at the bottom right of the snapshots) and at the second excleivated in £ =500 m,y = 300 m,
green square located at the bottom left) compared to the esd@cence solution (solid line). At these
receivers located close to the CPML layer (15 grid pointsyafk@m its beginning) the agreement is
good in spite of the grazing incidence and no spurious aidils can be observed. (Right): total energy
for a long (62 s) simulation decreases continuously from a@imam value of 792 J to a minimum
value of 8.7610~10 J. No instabilities are observed on this semi-logarithmioze, which means that
the discrete CPML is stable up to 36000 steps. On the rigl#,cam notice tiny oscillations owing to
the fact that total energy is so small that we start to seeftbetef roundoff of floating-point numbers
of the computer.

REFERENCES

[1] D. Komatitsch and R. Martin “An unsplit convolutional Pectly Matched Layer improved
at grazing incidence for the seismic wave equati@ophysics, vol. 72, no.5, SM 155—
SM167, 2007

[2] G. Festa and J.P. Vilotte, “The Newmark scheme as a \tglstiess time-staggering: an

efficient Perfectly Matched Layers implementation for spe@lement simulations of elas-
todynamics”,Geophys. J. Int., vol. 161, no. 3, 789-812, 2005.



