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ABSTRACT

In the context of wave propagation simulation, the perfectly matched layer (PML) absorbing boundary
condition has proven to be efficient to absorb non grazing incidence waves and surface waves, but the
classical discrete PML becomes significantly less efficientat grazing incidence. This is a severe limita-
tion in the case of thin mesh slices or in the case of sources located close to the absorbing boundaries
or receivers located at large offset. In order to improve theefficiency of PML at grazing incidence, in
Komatitsch and Martin (2007) we derived an unsplit convolutional technique (called CPML) for the
staggered-grid finite-difference integration scheme. Here we extend this CPML method to a variational
version of the seismic wave equation, focussing in particular on the spectral-element method. A hybrid
first/second-order time integration scheme is introduced.Using the Newmark time marching scheme,
Festa and Vilotte (2005) have shown that a velocity-stress formulation in the PML and a second-order
displacement formulation in the inner computational domain match perfectly at the entrance of the
CPML. The main difference between our unsplit CPML and the split formulation of the GFPML of
Festa and Vilotte (2005) lies in the fact that memory storageis reduced by 40% in 2D in the CPML
version. In both CPML and GFPML so-called memory variables are involved and are added to the
velocity and stress fields. In 2D, thirteen arrays (2 components of the velocity, 3 components of the
stress tensor, 8 memory variables) are involved for the CPMLcompared to 20 arrays for the GFPML.
Furthermore the CPML formulation is easier to implement. Weshow benchmarks on thin slices for a
two-layer model in the presence of a free surface.

The snapshots of Figure 1 show that waves can be efficiently absorbed in a heterogeneous isotropic
model in the presence of a free surface. In Figure 2, comparisons with a reference solution illustrate the
high efficiency of the variational CPML even at grazing incidence, since only very small discrepancies
are observed. In this same figure, total energy exhibits an exponential decay in time over several orders
of magnitude, which shows the stability of the variational CPML for long simulation times.



Figure 1: Snapshots of the propagation of P-SV waves excitedby a Ricker wavelet source located at
the orange cross in (x = 8500 m,y =2500 m) at the free surface of a 10000 m by 2500 m domain. Two
different materials are in contact at the discontinuity represented by the solid black line. CPML layers
are implemented on the right, bottom and left edges. Snapshots are shown at times 0.7 s and 2.8 s. No
significant spurious reflections can be observed, even at grazing incidence.
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Figure 2: (Left and middle): Time evolution of the numericalsolution with CPML (dotted line) for
the vertical component of velocity recorded at the first receiver (x =9500 m,y =300 m, green square
at the bottom right of the snapshots) and at the second receiver located in (x =500 m,y = 300 m,
green square located at the bottom left) compared to the exact reference solution (solid line). At these
receivers located close to the CPML layer (15 grid points away from its beginning) the agreement is
good in spite of the grazing incidence and no spurious oscillations can be observed. (Right): total energy
for a long (62 s) simulation decreases continuously from a maximum value of 792 J to a minimum
value of 8.7610−10 J. No instabilities are observed on this semi-logarithmic curve, which means that
the discrete CPML is stable up to 36000 steps. On the right, one can notice tiny oscillations owing to
the fact that total energy is so small that we start to see the effect of roundoff of floating-point numbers
of the computer.
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