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ABSTRACT

The stability of liquid layers heated from below, the classical Rayleigh-Benard problem, has been ex-
tensively analyzed in the literature (see [3]and the reference therein). It is also widely studied, the case
when the liquid is a binary mixture, so when the Soret effect has to be taken into account, see [6].
However, less is known when the fluid layer is confined with lateral boundaries. In the present paper,
following work [6], we analyze the stability of a binary mixture when this fluid is confined between
four rigid and adiabatic side walls, and a perfectly conducting top and bottom walls.

The linearizated PDE set governing the evolution of the system is taken from [6], the unknowns are the
stream function ψ(x, y, z), related with fluid velocity field by vx = 0, vy = ∂zψ, and vz = −∂yψ, the
temperature perturbation field T (x, y, z) and ζ(x, y, z) = C(x, y, z) + T (x, y, z) where C(x, y, z) is
the mass function field.

The zero velocity field on the six faces implies that ψ(x, y, z) must satisfy Cauchy homogeneous con-
ditions on y = ±1 and z = ±1, and Dirichlet homogeneous condition on x = ±1. As the temperature
is prescribed at the bottom and top boundaries, Dirichlet homogeneous conditions for T must be sat-
isfied on z = ±1, and no heat flux across four lateral boundaries implies Neumann homogeneous
conditions for T on y = ±1 and z = ±1. Finally Neumann homogeneous boundary conditions on
x = ±1, y = ±1 and z = ±1 for ζ have to be taken into account.

The governing equations and boundary conditions constitute an eigenvalue problem for the Rayleigh
number

(
Ra = gβT ∆TH3

να

)
where α is the thermal diffusivity. In order to solve the characteristic eigen-

value equations for arbitrary aspect ratios, A, B, separation ratio S and Lewis number Le = α/D,
where D is the molecular diffusion, Galerkin spectral techniques and collocation pseudospectral tech-
niques are considered.

When Galerkin is applied, the dependent variables can be expanded in triple-truncated series of trial
functions1 that satisfy above boundary conditions. Two kinds of trial functions families are taken into
account, Fröbenius type functions, like those used in [5] or [6], and Chebyshev polynomials.

1see for instance [1]



For collocation method only Chebyshev expansions is used. However, two implementation algorithms
are developed, one as done in [4] using the same trial functions as those used in the Galerkin method,
and the other using a matrix differentiation method2 (MMT).

Some of the obtained results are shown in table 1 and in figure 1.

Method: Galerkin Collocation
N=M=K Fröbenius Chebyshev Chebyshev

1 253.9406 637.4271 74.6178
2 209.3110 209.1281 208.6987
3 208.9085 209.0300 206.5871
4 208.8936 208.6014
5 208.8920 208.8072

Table 1: Results of critical Rayleigh (Rc) number
with A = B = 1, M = N = K and Le = 100.
Galerkin method using chebyshev functions takes
to long.
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Figure 1: Evolution ofRac versus separation ratio
when A = B = 1 and Le = 100

In conclusion, from a physical point of view we can obtain the dependence between the critical Rayleigh
number Rac, and Lewis number, separation ratio and aspect ratios, as it is shown in figure 1.

On the other hand, spectral methods with Fröbenius type trial functions are the most accurate method
for this physical problem, so is the best method when short expansion of the unknowns are considered.
However, collocation method runs faster than the spectral method, and this behaviour is more accen-
tuated when MMT algorithm is applied, therefore, we are allowed to obtain better results for the same
spent time of CPU. Nevertheless, impose boundary conditions is harder to introduce in MMT using
algorithms.

REFERENCES

[1] C. Canuto, MY Hussaini, A. Quarteroni, and TA Zang. Spectral Methods: Fundamentals in
Single Domains Series., Springer, 2006.

[2] John P. Boyd. Chebyshev and Fourier Spectral Methods., DOVER Publications, Inc., 2000.
[3] E. L. Koschmieder. Bénard Cells and Taylor Vortices. Cambridge, UK: Cambridge Univer-

sity Press, February 1993.
[4] N.Y. Lee, W.W. Schultz, and J.P. Boyd. “Stability of fluid in a rectangular enclosure by

spectral method” . International Journal of Heat and Mass Transfer, Vol. 32, 513 – 520,
1989.

[5] J.K. Platten and J.C. Legros. Convection In Liquids. Springer-Verlag and Berlin Heidelberg
New York Tokyo, 1984.

[6] J.K. Platten, M. Marcoux, and A. Mojtabi. “The Rayleigh–Benard problem in extremely
confined geometries with and without the Soret effect” . C.R. Mécanique, Vol. 335, 638–
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