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ABSTRACT

Solutions of direct time integration schemes that converge in time to conventional semidiscrete for-
mulations may be polluted at small time steps by spurious spatial oscillations, along with attendant
overshoot in time. These pathologies are the deleterious effects of higher modes of spatially discrete
formulations, which are approximated poorly, and are inevitably admitted into the computation as the
time step is reduced with a fixed mesh. This degradation is not an artifact of the time-marching scheme,
but rather a property of the solution of the semidiscrete formulation itself.

An analogy to singularly perturbed problems by the Rothe method (or horizontal method of lines),
of discretizing in time and then in space on each discrete time level, provides an upper bound on the
time step for the onset of spatial instability. Previous work applied this concept to one-step methods
for diffusion problems [1], advection-diffusion-reaction [2], and elastodynamics [3]. The analogy is
extended to derive a simple procedure of spatial stabilization that removes the pathology, leading to
stabilized implicit time-integration schemes that are free of spurious oscillations at small time steps

The present work extends these ideas to linear multistep methods [4]. Implicit algorithms included
in the widely-used LSODE [5] and VODE [6] software packages such as Adams-Moulton and BDF
methods are considered.
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