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ABSTRACT

The maritime transport of liquid natural gas (LNG) in pdfyidilled tanks grows considerably. This
enhances the demand for methods that accurately predifiiiidoehaviour inside sloshing tanks. To
examine the relevant flow phenomena and liquid motion insN& carriers, model experiments have
been carried out on a 1:10 scale. Various tank filling ratiod different types of motion have been
tested to study the sloshing behaviour at various sea siEtesmodel experiments provide extensive
validation material for the numerical simulation tool Con@W.

Figure 1: Air entrainment during model test (10% filling rateegular sway and roll motion)

Some details of the improved Volume Of Fluid (iVOF) methoddamFLOW will be presented. The
method resolves the governing equations in both the ligoil gas phase, where the latter may be
compressible. Compressibility of the second phase is itapbiin case of violent flow conditions,
especially when interesting two-phase phenomena occein, @sl air entrapment and air entrainment
(Figure 1). In the numerical method, particular attentias been paid to the average density around
the interface. Simple averaging techniques may resultunieps velocities, especially in case of high
density ratios. In ComFLOW, these are prevented by the uaeyudvity consistent averaging approach.
The two phases are convected by means of a first-order upwirahre (B2) or a more accurate, less



dissipative, second-order upwind scheme (B3). The interfa explicitly reconstructed by means of a
local height function and subsequently advected, ensaristgarp interface without smearing.

The behaviour of the sloshing liquid strongly depends uprenregularity of the tank motion and the
filling ratio of the tank. Video frames, wave probes and puessransducers have been used to compare
the fluid flow of simulations and experiments (Figures 2 and@jp-phase effects, such as air entrap-
ment, are more common in case of increasing tank filling sadiod irregular tank motion. A realistic
simulation of these effects is possible by accurately mogdelompressible two-phase flow, especially
when a relatively fine grid is used and the less-dissipatgo®isd-order upwind scheme is applied.
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Figure 2: Water heights at the tank-center and pressuralsighthe lower right corner for a case with

10% filling rate and regular sway motion. Experiments are gamad with 1-phase (B2) and 2-phase
(B2 and B3) simulations.
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Figure 3: Water-height and pressure profiles as in Figurathdw for a case with 25% filling rate and
irregular sway and roll motion.
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