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ABSTRACT

In this work we present the numerical solution of optimality systems corresponding to optimal control
problems governed by the bidomain equations which are widely used for describing the electrical ac-
tivity of the cardiac tissue. This bidomain model is based on partial differential equations of elliptic and
parabolic type, and a system of stiff ordinary differential equations. The space discretization of the state
and dual variables is achieved by the conforming finite element method, and the time discretization is
based on linearly implicit time stepping methods. The goal of this work is to present a first step towards
optimal control of the bidomain equations with the transmembrane current density stimulus acting as
the control variable and the control objective consisting in suppressing arrhythmia.

The bidomain equations: The most complete description of cardiac electricity is given by the bido-
main equations, where Ωc denotes the cardiac tissue sample domain and we set Qc = Ωc × [0, tf ].

−∇ · (σ̄i + σ̄e)∇φe −∇ · σ̄i∇Vm = Ie in Qc (1)

∇ · σ̄i∇Vm +∇ · σ̄i∇φe = β

(
Cm

∂Vm

∂t
+ Iion(Vm, v)− Itr

)
in Qc (2)

∂v

∂t
= g(Vm, v) in Qc (3)

φi and φe : Qc → R are the intracellular and extracellular potentials, Vm : Qc → R is the trans-
membrane voltage, v : Qc → Rn represents the ionic current variables, σ̄i : Ωc → Rd×d and
σ̄e : Ωc → Rd×d are respectively the intracellular and extracellular conductivity tensors, β is the surface
to volume ratio of the cardiac cells, Itr is the transmembrane current density stimulus as delivered by
the intracellular electrode, Ie is an extracellular current density stimulus, Cm is the capacitance per unit
area, and Iion is the current density flowing through the ionic channels. Eqn. (1) is an elliptic equation
and Eqn. (2) is a parabolic equation. Eqn. (3) is a set of non linear ordinary differential equations which
can be solved independently for each node. Assume that the intracellular and extra cellular potentials
have homogeneous Neumann boundary conditions. The initial values of the transmembrane voltage



and state variables are prescribed by given constant values. Here ∂Qc = ∂Ωc× [0, tf ]. Furthermore, for
the model equations, conductivity coefficients and discussion on treatment of boundary conditions, we
refer to R. W. Santos et. al [1]. The ionic model currents and the cell membrane model, we considered,
are based on the following Fitzhugh-Nagumo variant, for details see Colli Franzone et. al [2],

Iion(Vm, v) = GVm(1− Vm

vth
)(1− Vm

vp
) + η1Vmv , g(Vm, v) = η2(

Vm

vp
− η3v) (4)

where G, η1, η2, η3 are positive real coefficients, vth is a threshold potential and vp the peak potential.

Optimality system: The choice of the cost functional which is suitable to optimize the potentials and
currents given by

J(Vm, Itr, Ie) = min
1
2

∫ T

0

(∫

Ωc

|∇Vm|2 dΩc + α

∫

Ωc

(|Itr|2 + |Ie|2)dΩc

)
dt (5)

After construction of the Lagrangian, the optimality equations can be derived setting the first order
variation with respect to φe, Vm and v equal to zero. This leads to

−∇ · (σ̄i + σ̄e)∇p +∇ · σ̄i∇q = 0 , (6)

−∇ · ∇Vm −∇ · σ̄i∇p +∇ · σ̄i∇q + β(Cmqt − (Iion)Vmq)− gVmζ = 0 , (7)

− β(Iion)vq − ζt − gT
v (Vm, v)ζ = 0 . (8)

The Optimality conditions are αItr + βq = 0 , αIe − p = 0, the terminal conditions are ζ(T ) =
0 , q(T ) = 0 and the boundary conditions are ¯σe + σe∇p · η = 0 on ∂Qc , σ̄i∇q · η = 0 on ∂Qc.

Numerical discretization and results: The spatial discretization of the optimality system is based on
piecewise linear finite elements, while the temporal discretization uses linearly implicit Runge-Kutta
methods. First results are available for conjugate gradient based optimization strategies. Second order
methods are currently being developed.

Conclusions: The presented numerical methods motivate us to study further the behavior of reaction-
diffusion systems coupled with non linear stiff ordinary differential equations as they arise in cardiac
modeling. The gradient in the cost leading to rough solutions of the adjoint equation and the pattern
formation type behavior of the dynamical system imply many challenging challenges to efficient nu-
merical implementations. To cope with long time horizons, receding horizon strategies are currently
being tested as well.
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