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ABSTRACT 

Moving Particle Semi-implicit (MPS) method
[1]
 is a Lagrangian particle method which 

requires no calculation mesh for incompressible flows. MPS is capable of calculating complex 

fluid flows such as a breaking wave
[2]
 and droplet breakup

[3]
 involving fluid disruption or 

coalescence. Fluid structure interaction was also solved by MPS
[4]
. Smoothed Particle 

Hydrodynamics (SPH) method
[5]
 is another particle method developed for compressible flows. 

Some researchers conducted incompressible flow calculations based on SPH method. 

There are two major approaches for unified algorithm solving compressible and 

incompressible flows for Eulerian methods. Hirt
[6]
 introduced limited compressibility to 

incompressible codes. This approach is only for law mach number flows, therefore shock waves 

cannot be captured. Another approach based on CIP (Cubic Interpolated Pseudo particle) was 

suggested by Yabe
[7]
. Yabe’s C-CUP (CIP Combined Unified Procedure) method is derived 

from compressible flow equation, and can capture shock waves. 

 Though unified procedures have been suggested by researchers for Eulerian methods
[6],[7]

, there 

are no study about such algorithm based on a particle method. Consequently, we extend MPS 

method to solve compressible flows as well as incompressible flows by a similar approach to 

the C-CUP
[7]
 method. We term it MPS-AS (MPS for All Speed) method. 

Governing equations are the mass, momentum, energy conservation and gas state equations. 

We get an evolution equation of pressure from the energy equation as: 
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where, p is pressure divided by density, and Φ is a dissipation function. The other symbols are 

used as the ordinary meanings, respectively. 

 Spatial discretization is the same as the original MPS method. Time evolution consists of two 

steps: prediction and correction phases. In the first phase, the predicted velocity u
*
 is calculated 

explicitly as: 
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In the second phase, u
*
 is corrected as: 
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p
n+1
 is calculated implicitly by coupling equations (3) and (4) as: 
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We applied our method to two-dimensional shock tube and dam break problems for validating 

capability of solving compressible and incompressible flows, respectively. 

As we can see in figure 1, an expansion wave, contact face and shock wave can be captured. 

Tough there are some overshoot and vibrations, average positions of waves and values in each 

regions are similar to theoretical solution. These overshoot and vibrations will be suppressed by 

using a better artificial viscosity. 

In the dam break calculation, MPS-AS method can capture the free surface and manage the 

interaction between water and the solid wall as in figure 2. Water impinges on the right side 

wall and then goes up. 
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Figure 1. Shock Tube Result 

 

  
Figure 2. Dam Break Calculation 
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