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ABSTRACT

In this paper, we present the developments of a Localized Collocation Meshless Method
(LCMM) to simulate fluid mechanics and heat transfer under laminar conditions. The meshless
notion indicates that the current method is not cell-based; rather it relies on a point distribution in
the computational domain. Each of those points is referred to as a data center. The pre-
processing for this meshless method is independent from the geometry shape as it always yields
a Cartesian point distribution in the interior and non-uniformly distributed points near the
boundaries
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Figure 1. The LCCM topology for data centers.

The formulation of LCMM depends on polynomial enriched radial basis function collocations
and moving least square polynomial expansions. A localized expansion over a group or topology
of influence points, , around each data center is sought for the  RJ dependent variable is 9
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where  are unknown expansion coefficients,  are expansion functions, and α ;4 4Ð Ñ RTB
polynomials  added to the expansion to guarantee that constant and linear fields can beT Ð Ñ4 B
retrievedexactly. The inverse Hardy Multiquadric  radial-basis [1] are used:;4Ð ÑB
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Where  is a shape parameter, and  is the Euclidean distance from  to . We discuss- < Ð Ñ4 B B B� � � �4
the choice of  and he implementation of shadow points at the boundary, as well as - the so-called
"derivative vector" approach to express any order derivative at data center, whereby, a derivative
is obtained by multiplying the corresponding derivative vector by a "scalar vector" comprises of
the given field variable values at points neighboring the data center.
 The Navier-Stokes equations with  as the flow velocity vector, Z
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are explicit discretized using a third order time stepping scheme and the spatial derivatives are
discretized utilizing a polynomial enriched radial basis function meshless method approach. A
velocity correction iterative solution algorithm is utilized to ensure coupled satisfaction of all the
equations at convergence [2]. As we dealing with convectively dominated fluid flow problems, a
high order upwinding scheme is incorporated and a special scheme is developed to dampen the
numerical oscillations. The meshless results were numerically validated using the finite volume
commercial solver Fluent 6.2 and a research finite volume code. A very good agreement was
found between the LCCM and the finite volume method as seen below for a natural convection
problem in a rectangular cavity containing molten Aluminium: top and bottom adiabatic and
temperature difference imposed between the two vertical walls inducing natural convection.
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Figure 2. Meshless velocity vectors colored by magnitude for natural convection in a liquid
aluminum cavity at  and comparison of FVM and meshless Nusselt number&=ß "!ß #!=ß #&=ß $!=
evolution in time on the left-hand and right-hand walls of cavity.
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