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ABSTRACT

In the framework of oil exploration, seismic processing is used to get a representation of the subsurface
where the hydrocarbons are trapped. Since the work of Hemon [1] in the 70’s, it is well-known from the
geophysical community that the seismic imaging methods based on the solution of the full wave equa-
tion are the most efficient and accurate to deal with very complex propagation media, when compared
to the ones based on the solution of the one-way wave equation. Nowadays one of the most commonly
used imaging technique is the Reverse Time Migration (RTM), which relies on many successive so-
lutions of the wave equation. Seismic imaging is thus requiring a very large amount of computational
power, especially as far as the memory storage is concerned. Indeed accurate numerical methods for
the wave equation lead to the solution of huge systems with several millions of degrees of freedom.
It is therefore now crucial to develop low-storage consuming numerical methods while keeping the
high accuracy required to obtain a good image of the subsurface. The wave equation is mostly solved
by high-order finite difference methods in space which, when combined to a leap-frop-like scheme in
time, leads to an explicit computation of the wave field since the mass matrix is diagonal. However fi-
nite differences are not well suitable to accurately take the topography effects into account because they
involve grids which approximate the interface by steps. High order absorbing boundary conditions are
not easy to implement in a finite difference scheme, especially since they require a specific treatment
at the corners. Finite element methods are then an efficient alternative since they use meshes adapted
to the topography of the domain and the boundary conditions are naturally taken into account in the
variational formulation. Nevertheless, the most classical among them do not lead to an explicit scheme
because the mass matrix (without any particular treatment) is not diagonal. To overcome this drawback,
one can use the so-called mass lumping technique and compute the coefficients of the mass matrix by
a judicious quadrature rule [2]. This technique generally penalizes the convergence order of the finite
element method since the appropriate quadrature rules are mostly of lower order than the finite element
method and that is why the spectral element method [3,4,5] has attracted geophysicists. The spectral
elements are indeed compatible with the use of a Gauss-Lobato quadrature rule of the same order as the
elements one. However, this method requires to mesh the domain with quadrangles in 2D ou hexaedra
in 3D which are difficult to compute and not always suitable to complex topographies. Moreover, as far



as we know, the order of convergence of this method is not always guaranteed when the velocity field is
varying inside each element. Recently, Grote et al. [6] applied the Interior Penalty Discontinuous Ga-
lerkin (IPDG) method to the wave equation. This new approach is based on meshes made of triangles
in 2D or tetrahedra in 3D, which implies the topography of the computational domain is discretized ac-
curately. Furthermore, the resulting discrete scheme remains quasi-explicit because the mass matrix is
block-diagonal without any approximation of its entries by a quadrature rule. The convergence order is
then ensured as for the spectral element method. Moreover this method seems to be well-adapted for the
handling of polynomial velocities inside each element. In this work, we will present the IPDG method
we use and we will compare it to a spectral element method in the1D case. Then we will validate it and
analyze its performance for the RTM in 2D. We will also consider various time discretization schemes
in order to evaluate the influence of the time integration on the computation of the solution in complex
media. We will particularly take care of the dispersion effects produced by the CFL condition which has
to be adapted to the velocity discontinuities. The reference solution are computed either analytically by
the Cagniard-de Hoop method for simple configurations or numerically by a finite difference scheme
of eighth order in space and second order in time for more complex problems.
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