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ABSTRACT

The so called mortar method has been successfully applied to solve frictionless and frictional contact
problems using different methods as the penalty, Lagrange multiplier or augmented Lagrange method
[1-2]. Unlike the classical node-to-segment method, the mortar or segment-to-segment method allows
for an optimal convergence rate for nonconforming meshes.
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Figure 1: Smoothed surfaces using Hermite polynomials.

In this work we propose a segment-to-segment formulation where the contact surfaces of the bodies
(master and slave) are defined using cubic Hermite polynomials. The contact problem is formulated
with the Lagrange multiplier method and the following variational equation is obtained [1]:
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where gN is the gap, δgN is the virtual gap, λN is the Lagrange multiplier (contact pressure) and δλN

is the variation of the multiplier. δW i(vh, uh) is the virtual work due to internal forces and δW e(vh)
is the virtual work due to external forces. Linear elements are considered and a linear interpolation is
defined for the multiplier and its variations.

For a given segment (see figure 1), the smooth definition of the surface (C1 cubic polynomial) is done
using the position of the two nodes defining the segment xks−1 and xks and the averaged normal vectors
n̂ks−1 and n̂ks . Since numerical integration is performed in order to compute the contact integrals, each
contact unknown (gap, multiplier and its variations) is calculated for a given integration point taking
into account the cubic Hermite polynomial.

A number of numerical examples have been solved for small and large deformation. For example, the
problem of a cylinder under internal pressure, depicted in figure 2(a), has an analytical solution so the
discretization error can be computed. The problem has been solved with a sequence of uniformly refined
meshes. In figure 2(b) the error in energy norm is plotted as a function of the number of degrees of
freedom of the mesh. Three cases are compared: a conforming mesh, a formulation without smoothing
and the proposed smooth contact. Note that, although the initial gap is known to be zero in this problem,
it has been calculated from the position of the nodes (like in a large deformation problem).
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(a) Schematic model
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Figure 2: Cylinder under internal pressure.
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