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1 Introduction

We consider the iterative solution of systems of the form
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where A € R™*"™ is square but not necessarily symmetric, B € R™*" b € R" and d € R™. In a fluid flow
context, systems such as (1) arise as Stokes subproblems in Navier-Stokes iterations when considering the
flow of two or more immiscible fluids through a cavity and must be solved to compute a correction (u,p)
in the velocity and pressure fields. The large size of such problems preclude a direct factorization of the
coefficient matrix of (1). On the other hand, iterative methods applied to (1) usually perform very poorly.
We are particularly interested in the case where A may not be assembled explicitly but rather, matrix-vector
products with A may be obtained by calling a function. We assume that B is available explicitly.
Whenever A is symmetric and positive definite, (1) represents the first-order optimality conditions of the

equality-constrained quadratic program

minimize —bTu + %uTAu

u€ER™
subject to  Bu =d.

(2)

In this type of application, the density of the coefficient matrix is mostly due to A. Assuming that B has
full row rank, it is often feasible to compute a factorization of the projection matriz
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where G is a sparse symmetric approximation to A that is positive definite over the nullspace of B. A par-
ticularly efficient iterative method for (2) is then the projected preconditioned conjugate gradient algorithm
often used in nonlinear optimization contexts. This method typically requires the factorization of a single
projection matrix and one matrix-vector product with A per iteration.

We examine similar Krylov-type iterations for the case where A is unsymmetric and present a methodology
by which to derive projected Krylov methods for systems of the form (1). We concentrate on the Bi-CGSTAB
and TFQMR families of methods. The methods we consider are akin to so-called projection methods, which are
sometimes regarded as being too expensive and only effective on systems in which A is diagonally dominant.
We hope that this paper will correct that reputation by showing that efficient projections combined with
the appropriate Krylov iteration make for a very competitive numerical method.

Let Z € R7*™ be a matrix whose rows form a basis for the nullspace of B. Any solution u* to (1)
may be written u* = Zu} + BTu}, so that (1) yields BBTu* = d, which uniquely determines u’ and
leaves u} as a solution to ZTAZu} = ZT(b — AB™u}). Applying any Krylov method to the latter system
with a preconditioner of the form M = ZTGZ, where G is such that M is positive definite, is equivalent
to applying the same Krylov method with A as coefficient matrix, with preconditioning steps replaced by
projections computed via (3), and without recourse to computing Z. Special care must be observed in an
implementation of this scheme as severe numerical cancellation likely occurs, especially in the projection
steps. We will present a remedy to this difficulty.
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2 Implementation and Numerical Results

We only briefly illustrate the projected Bi-CGSTAB algorithm in this abstract. Factorization of the projection
matrix is performed by the multi-frontal symmetric indefinite MA57 from the Harwell Subroutine Library.
The stopping test implemented by default is triggered when the projected Bi-CG residual vector sj is small
or when the residual vector rj satisfies a Galerkin-type condition, or if the total number of matrix-vector
products exceeds 2n 4, where ny4 is the order of the (1,1) block matrix A. We compare the projected Bi-
CGSTAB approach with a direct LU factorization of (1). The comparison is based on the total solution time
and memory requirements. The LU factorization is realized by means of the UMFPACK package. In the
following test, we choose G = I. The test was performed with the Intel compiler 10.0 on a 2.4 GHz Intel
Core 2 Duo Apple laptop with 4 GB of memory. The sparsity pattern of the coefficient matrix, of order 7761,
is show in the leftmost plot of Fig.1. The (1,1) block, the (1,2) block and the whole augmented matrix have
density 0.334%, 0.457%, and 0.351% respectively. The projection matrix being symmetric, we only store its
lower triangle, which has a density of 0.047%. Its factors have a density of 0.092%—a minor example of
fill-in.

Factorization of (3) was realized in 0.14 seconds and the algorithm performed 2, 523 iterations and a total
of 5,046 matrix-vector products before reaching convergence in 23.83 seconds. The total running time on
this example is thus 23.97 seconds. The rightmost plot of Fig.1 shows the residual history. The norm of the
residual vector is 6.69e—09, the relative residual is 1.13e—08 and the relative error with the solution found
with the LU factorization is 5.84e—06. In the LU factorization, the L factor was found to have 568,780
entries and U was found to have 543, 144, densities of 0.944% and 0.902% respectively, a substantially more
important fill-in. In this small-scale example, the LU factorization was performed in a mere 0.33 seconds.

Order 7761 with 346678 nonzeros
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Figure 1: Left: Sparsity pattern of the linear system occurring at iteration 8 of a Navier-Stokes process.
Right: Residual history of the PBCGTAB method.
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