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Dissipative dynamics of fluid vesicles
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ABSTRACT

Introduction. Vesicles consist of a closed lipid bilayer membrane being filled with and surrounded by
a fluid. Membranes formed from multiple lipid components may exhibit coexisting phases or domains
with distinct lipid compositions, which is expected to lead to a coupling of the vesicle morphology (e.g.
the curvature) and the domain morphology (e.g. the line tension) inducing membrane deformations,
budding or fission [1]. Among the various reasons to study vesicles let us mention that vesicles serve
as a model system for the much more complicated biomembranes. For the latter, an interplay between
geometric properties (like curvature) and biological properties (e.g. ion channel activity) is of great
interest [2]. Also vesicles can be prepared experimentally and are explored and used as drug delivery
systems.

In the following, the dynamics of vesicles with coexisting fluid domains will be consistently described
in terms of generalized gradient flows, which guarantees a dissipative dynamics. This naturally intro-
duces the dynamic laws in a variational form, i.e., in terms of weak formulations, which allow for a
discretization using a finite element method. Here the membrane will we represented as a triangulated
surface using parametric linear finite elements.

Model. The dynamics of the membrane is governed by the elastic properties of the membrane, which
depend locally on the lipid phase, the phase separating processes in the membrane and the interaction
with the surrounding fluid. Here we will stick to the local model, i.e., we neglect the interactions with the
fluid. The membrane (lipid bilayer) itself may be viewed as a 2-dimensional incompressible fluid film.
Let Γ(t) denote the membrane (interface) at time t and u(x, t), x ∈ Γ(t), an order parameter describing
the lipid phase. The total membrane free energy F [u, Γ] = FB[u, Γ] + FT [u, Γ] + . . . , consists of
some phase-field approximation FT of the line energy separating the domains in the membrane (e.g. a
Cahn-Hillard type energy) and the following elastic bending energy FB of the membrane, which is a
generalization of the classical Helfrich model [3],

FB[Γ, u] =
1
2

∫
Γ

bn(u)
(
H −H0(u)

)2 dΓ,



with mean curvature H , normal bending stiffness bn(u) and spontaneous curvature H0(u) depending
on the order parameter u. Note that due to osmotic balance, the volume inside the fluid is constant
and that the membrane is inextensible. Thus we have to deal with a local area and a global volume
constraint.

Dissipative dynamics. To construct a dissipative dynamics, we proceed as follows: First, assuming u
to be conserved, we expect u to obey some local balance law

u̇ + u∇Γ · v +∇Γ · q = 0, (1)

with u̇ denoting the material derivative and q some surface current q. Second, the dynamics of u and Γ
is required to be dissipative with respect to F [u, Γ], i.e., using (1), we postulate

0 ≥ d

dt
F = DuF(u̇) + DΓF(v) (2)

= DΓF(v)−DuF(∇Γ · q)−DuF(u∇Γ · v) =:
d

dt
F(q,v), (3)

with v denoting the velocity of the membrane, Du being the functional derivate corresponding to varia-
tions in u, and DΓ the derivative corresponding to variations of the surface Γ, where, however, the order
parameter u is evaluated at the fixed surface. Finally, we postulate

d

dt
F(q,v) = −g(q,v;q,v), (4)

for some suitable metric g = g(q1,v1;q2,v2), which clearly implies a dissipative dynamics. As an
example one may choose (splitting v = vn + t into the normal and tangential components)

g(q,v;q,v) =
∫

Γ
αu|q|2 dΓ +

∫
Γ

αvv
2 +

∫
Γ

αt|t|2,

for some strictly positive functions αu, αv, αt, which immediately yields equations for the unknowns
v, t,q in a variational form. Note that the expression for the flux q has to plugged into the balance law
(1) to obtain an evolution equation for u. For the above metric, one does obtain some Willmore-Flow
-type dynamics of the membrane coupled with a Cahn-Hillard-type dynamics for the order parameter
u, which, however, are strongly coupled.

To account for the global volume and the local area constraint we introduce two Lagrange multipliers
into the free energy functionalF [u, Γ]. A similar reasoning as above does lead to a dissipative dynamics
and the constraints uniquely fix the Lagrange multilipliers, where for the local constraint multiplier an
elliptic integro-differential equation has to be solved.

Numerics. We will give some first numerical examples. Here we use an operator splitting approach
to first solve for the unconstrained dynamics – using methods introduced for the discretization of the
Willmore flow in [4] – and then for the Lagrange multipliers to add the constraint correction. The
discretization is based on linear parametric finite elements. Finally we will discuss the coupling of the
membrane dynamics to the Stokes flow of the surrounding fluid.
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