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ABSTRACT

Acoustoelasticity describes stress dependency of the velocities of sound-like waves propagating through
an elastic material. This phenomenon may be used of in the echo pulse method to determine material
parameters (moduli) and both the residual and active stresses in elastic materials and structures.
The theory of acoustoelasticity was introduced by Hughes and Kelly [1]. They measured the effect
of the uniaxial stress on the velocity of the sound wave in an isotropic elastic material. They also
proposed the method for identi�cation of the three additional third-order elastic constants corresponding
to Murnaghan's free energy function [2]. Later on, Thurston and Brugger [3] extended the theory to
the case of an anisotropic material with arbitrary symmetry, which was further developed by several
authors. However, all of them based their equations on the Green-Lagrange strain tensor.
The frequently used Green-Lagrange strain tensor is easy and straightforward in its de�nition (it is the
pull-back of the covariant current metric tensor) and may well be used, the constitutive models based on
it often exhibit de�nite instabilities when performing under large deformation (see [4]). For example,
the two-parameter elasticity rotations with Green-Lagrange strain tensor give completely non-realistic
material response already beyond 30 percent strain. In acoustoelasticity, this undesirable feature leads
to high sensitivity of the third order material parameters to small perturbations applied to the input
velocities (which may be thought of as measurement uncertainty). For experimental evidence performed
on annealed and non-annealed aluminium alloys, see [5].
Theoretically, all the strain measures are equivalent but for a �xed choice of the stored energy function,
for instance a polynomial of the third-order, different strain tensors will represent different material
models [6]. If so, the de�nition of the strain tensor becomes essential and, in particular, stability then
seems to be the key issue. Because of these reasons and keeping stability issues in mind, the authors of
this paper set out to derive acoustic tensors based on the third order polynomial free energy function,
using an arbitrary Seth-Hill strain measure, seeking the best alternative in terms of sensitivity property.
It turned out that among all possibilities the Hencky logarithmic strain tensor performed best. In this
work, the coef�cients of the acoustic tensor as functions of the applied initial stress are determined.



The result may be used to establish numerical values of material constants suitable for the logarithmic
model of hyperelasticity.
Resulting expressions for the elastic moduli identi�cations and wave velocities in a homogeneous de-
formation �eld induced by three simple modes of pre-stress
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• material pre-stressed in longitudinal direction σxx = t
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• material pre-stressed in transverse direction σyy = t
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It is shown that the coef�cients going with Hencky's strain de�nition are thrice less sensitive than those
of the original Hughes and Kelly solution.
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