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ABSTRACT

The prodigious advances in computational modeling of physical processes and the development of
highly non-linear, multiscale and multiphysics models poses several challenges in parameter identifica-
tion. We are frequently using large, forward models which imply a significantcomputational burden, in
order to analyze complex phenomena. The accuracy of the results provided depends strongly on assign-
ing proper values to the various model parameters. In solid mechanics for example laboratory testing is
performed using fairly large specimens which however, do not immediately provide information about
all the parameters in the material model (e.g. elastic modulus, yield stress etc) atthe scale of interest,
particularly in heterogeneous materials. The present paper is concerned with the problem of identifying
parametric variability at various length scales from disparate measurements and experimental observa-
tions using computational models.

Traditionally, two basic approaches have been followed in addressing these problems. One one hand,
deterministic optimization techniques which attempt to minimize the mean square error ofmodel pre-
dictions and observations. Usually the objective function is augmented with regularization terms which
alleviate issues with the ill-posednesss of the problem. One the other hand, statistical approaches based
on the Bayesian paradigm have been employed which attempt to calculate a (posterior) probability
distribution function on the parameters of interest. The latter approach offers several advantages as it
provides a unified framework for dealing with the uncertainty introduced bythe incomplete and noisy
measurements, but most importantly it can be readily coupled with any black-box, forward solver.

In traditional Bayesian formulations, the representation of the unknown field has coincided with the
forward model’s. In cases where finite elements are used as forward solvers, the property of interest is
assumed constant within each element and therefore the vector of unknowns is of dimension equal to
the number of elements. This offers obvious implementation advantages but also poses some difficulties
since the scale of resolution of the unknown field is implicitly selected by the solver and is essentially
equal to the size of the elements. This is problematic in two ways. On one hand if the scale of variability
is larger than the grid, a waste of resources takes place, at the solver level which has to be run at unnec-
essarily fine resolutions and at the level of the inference process whichis impeded by the unnecessarily
large dimension of the unknown vector. On the other hand, if the scale of variability is smaller than
the grid, it cannot be identified even if the solver provides sufficient information for discovering this



possibility. More importantly perhaps, prior information on the scale is not prescribed by the prior, as
it is done with other aspects of the model, but by the forward model.

Another significant hindrance with the application of Bayesian models is the significant computational
cost. Even though the output of a Bayesian model is not just a single value for the parameters of interest
but rather a distribution which compares the likelihood of all possible hypotheses, the computational
effort implied by repeated calls to the forward solver can be enormous andconstitute the method im-
practical for realistic applications. This is amplified if the posterior distribution ismulti-modal i.e.
several significantly different scenaria are likely. It is apparent thatit would be desirable or even nec-
essary to use forward models , e.g. models that operate at coarser resolutions, that are faster in order
to make inferences. This transition of information is not straightforward if therepresentation is tied to
the solver. Attempts have been made using parallel tempering (e.g. [2]) or hierarchical representations
based on Markov trees ([4]) which however require performing inference on representations at various
resolutions simultaneously,

In the present paper we adopt a nonparametric model which is independent of the grid of the forward
solver and is reminiscent of non-parametric kernel regression methods.The unknown parametric field is
approximated by a superposition of kernel-type functions centered at various locations. The cardinality
of the representation, i.e. the number of such kernels, is treated as an unknown to be inferred in the
Bayesian formulation. This gives rise to a very flexible model that is able to adapt to the problem and
the data at hand and find succinct representations of the parametric field of interest. Prior information
on the scale of variability can be directly introduced in the model.

Inference is performed using Sequential Monte Carlo samplers ([3]). These represent a set of flexible
simulation-based methods for sampling from a sequence of probability distributions; each distribution
being known up to a normalizing constant. These methods were originally introduced in the early 1950s
by physicists and have become very popular over the past few years in statistics and related fields. They
utilize a large set of random samples, named particles, which are propagated using simple importance
sampling, resampling and updating/rejuvenation mechanisms. In our case the rejuvenation of the pop-
ulation is performed using Reversible Jump MCMC moves in order to explore configurations that lie
in spaces of variable dimension ([1]). These moves include update moves torefine the kernel loca-
tions/amplitudes/spreads, but also birth and split moves to add new kernels and death and merge moves
to eliminate erroneous or redundant kernels. The algorithm is directly parallelizable as the evolution of
each particle is by-and-large independent of the rest. The sequence of distributions defined is based on
using solvers that operate on different scales and which successively produce finer discretizations. This
results in a hierarchical approach that makes use of the results from solvers operating at the coarser
scales in order to update them based on analyses on a finer scale. Several examples on linear and non-
linear problems are presented.
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