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ABSTRACT

This paper presents a new membrane-locking free curved-beam element for the nonlinear in-plane large
deformation analysis of arches. In the conventional formulation of curved-beam elements, the strains
under in-plane loading consist of the membrane strain and the bending strain and given by

εss = εm + εb with εm = w′ − v/R and εb = −yκ = −y
(
v′′ + w′/R

)
, (1)

wherev andw are displacements in the radial axisoy and axial axisos (Figure 1),κ is the curvature
change due to deformation, and( )′ ≡ d( )/ds.
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(a) Arch with end restraints (b) Cross-section

R

xo

y

2

P
P

y
y

Figure 1: Restrained arch.
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Figure 2: Axes and position vectors.

The axial and radial displacements can be expressed as

w = a1 + a2s, v = a3 + a4s + a5s
2 + a6s

3 (2)

whereai are generalized degree of freedoms. Substituting Eqn (2) into Eqn (1) leads to

εm = a2 −
(

a3

R
+

a4s

R
+

a5s
2

R
+

a6s
3

R

)
and κ = 2a5 + 6a6s− a2

R
. (3)



Under most conditions of loading, a slender arch bends but has very little membrane strain. In the limit
of slenderness, the membrane strain vanishes, which is known as the inextensibility condition. The
inextensibility conditionεm = 0 for all s requires that

a2 − a3/R = 0, a4 = a5 = a6 = 0. (4)

If the conditiona2 − a3/R = a5 = a6 = 0 is enforced, then the only contribution to the curvature
κ comes from the membrane terma2. The nonzeroai produces nonzeroεm whose associated strain
energy and stiffness are very large for a slender element. Thus, when a bending load is applied, bending
deformation tends to be ”locked out” of the element response. In this case, the membrane and bending
strains given by Eqn (1) interact unfavourably in the curved element, so that nodal displacements that
should be resisted only by bending are resisted by membrane deformation as well. Because membrane
stiffness is far greater than bending stiffness is a slender arch, the desired bending mode tends to be
excluded from element response to load.

In this paper, an exact rotation formulation is used to derive the strains, The rotations from the basis
vectorspy,ps in the undeformed configuration to the basis vectorsqy,qs in the deformed configuration
can be described as

{py,ps}T = R{qy,qs}T with R =
[

(1 + w̃′)/(1 + ε) ṽ′/(1 + ε)
−ṽ′/(1 + ε) (1 + w̃′)/(1 + ε)

]
. (5)

where(1+ ε) =
√

(1 + w̃′)2 + ṽ′2, ṽ′ = v′−wκ0, w̃′ = w′+vκ0, andκ0 = −1/R. The matrixR is a
skew-symmetric and satisfies the orthogonal and unimodular conditions of the two dimensional special
orthogonal group SO(2) thatRRT = RTR = I and detR = 1.

From the position vector analysis, the strainεss can be obtained as

εss = w̃′ +
1
2
ṽ′2 +

1
2
w̃′2 − y

{
ṽ′′(1 + w̃′)− ṽ′w̃′′ + κ0[(1 + w̃′)2 + ṽ′2]1/2 − κ0

}
, (6)

where all the higher order terms are retained, and the termκ0[(1+w̃′)2+ ṽ′2]1/2 includes the interaction
of the axial extension with the initial curvature on the curvature changes. Substitutingṽ′ = v′ − wκ0,
w̃′ = w′ + vκ0 into Eqn (6) and ignoring the higher order terms leads to

εss ≈ w′ + vκ0 +
1
2
(v′ − wκ0)2 − y(v′′ + vκ2

0) (7)

which shows that the curvature change is given byκ = v′′ + vκ2
0 and so the axial deformations in the

strain given by Eqn (6) do not affect the curvature change. Hence, the curved beam element based on
the nonlinear strain given by (6) will be membrane locking-free.

By comparing the curvature change given by Eqn (7) with that given by Eqn (1) and notingκ0 = −1/R,
it can be obtained that

v′′ + vκ2
0 = v′′ − w′κ0 ⇒ w′ + vκ0 = 0 ⇒ εm = w′ − v

R
= 0 (8)

which indicates the required axial inextension condition is satisfied.
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