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ABSTRACT 

Flows in the nature are almost always formed from multiphases. Such a fluid flows are 
very complex and express different behaviour under different conditions. Therefore we 
are interested to use proper numerical models to describe physical behaviour of such a 
fluid flow. In suspension flows modeling where we consider that particles are rigid and 
underformable with own rotation, we can use micropolar fluid flow theory. This theory 
also enables accurate computation of flows in a scale, where questions arise on the 
accuracy of the Navier-Stokes equation. Micropolar fluids are subclass of microfluids 
introduced by Eringen [1]. Simple microfluid is by Eringen’s definition fluent medium 
whose properties and behaviour are influenced by the local motions of the material 
particles contained in each of its volume element. A microfluid is isotropic, viscous 
fluids and possesses local inertia. As mentioned, in micropolar fluids, which are 
subclass of microfluid, rigid particles contained in a small volume element can rotate 
about the center of the volume element described by the micro-rotation vector Eringen 
[2]. This local rotation of the particles is independent of the mean fluid flow and its 
local vorticity field. From this theory is also expected to describe successfully non-
Newtonian behaviour of certain fluids, such a liquid crystals, ferro liquids, colloidal 
fluids and liquid with polymer additives. 
Among different approximation methods for solving problems of fluid flow Boundary 
Element Method (BEM) is increasingly gaining attention. In this work, the micropolar 
fluid flow theory is incorporated into the framework of velocity-vorticity formulation of 
Navier-Stokes equations presented by Škerget et al. [3] and show how to incorporate the 
micropolar fluid theory into the BEM framework. Governing equations are derived in 
differential (eq. 1-4) as well as integral form. 
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Diferential operator ܦሺ·ሻ/ݐܦ ൌ ߲ሺ·ሻ/߲ݐ ൅  ௞ represents the Stokes materialݔ߲/௞߲ሺ·ሻݒ
derivative. In eq. 1-4 is presenting ݒ velocity, ߱ vorticity, T temperature, N 
microrotation, ߩ fluid mass density,  ்ߚ thermal expansion coefficient, ܿ௣ specific 
isobaric heat per unit mass, ߣ conduction,  ߤ௩ dynamic viscosity, ݇௩ vortex viscosity 
coefficient, ߙ௩, ,௩ߚ  ௩ viscosity gradient coefficients and ݆ microinertia. Derivedߛ
numerical algorithm is verified on example of natural convection in partial heated 
enclosure. Natural convection is a physical phenomenon, where in presence of the 
temperature difference between body surfaces buoyancy differences appeared. Most 
fluids near a hot wall will have their density decreased, and an upward near wall motion 
will be induced. Natural convection of micropolar fluid in rectangular enclosure was 
presented in the papers from Aydin and Pop [4] for different Rayleigh and Prandtl 
numbers. In the table 1 the results for ݇௩=0 (newtonian fluid) are compared with 
benchmark results of newtonian fluid from Davies [5] and with micropolar fluid flow 
results from Aydin and Pop [4] also for ݇௩=0. 
 
Table 1: Comparison of averaged Nusselt number in dependence of Rayleigh number. 

Ra  Present study  Davies [5]  Aydin and Pop [4] 
103  1,118  1,118  1,118 
104  2,263  2,243  2,234 
105  4,54  4,519  4,486 
106  8,742  8,8  8,945 
107  17,323  ‐‐‐  ‐‐‐ 
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