FLUID STRUCTURE INTERACCION WITH HIGH ORDER DISCONTINUOUS GALERKIN METHODS

*Jaime Peraire, Per-Olof Persson and David J. Willis

Department of Aeronautic and Astronautics Masachussetts Institute of Technology, Cambridge, MA 01730, USA peraire@mit.edu, http://rapahel.mit.edu

Key Words: Compressible Viscous Flows, Aerodynamics, Fluid Structure Interactions, Discontinuous Galerkin Methods.

ABSTRACT

We consider high fidelity simulations of aerodynamic problems exhibiting significant fluid structure interaction. We will present our discontinuous Galerkin methodology for the discretization of convection-diffusion systems and also address efficient solution strategies[1,4]. In order to handle problems involving variable geometries, we introduce a continuous mapping [3] between a fixed reference configuration and the time varying domain. By writing the Navier-Stokes equations as a conservation law for the independent variables in the reference configuration, the complexity introduced by variable geometry is reduced to solving a transformed conservation law in a fixed geometry. The spatial discretization is carried out using the Discontinuous Galerkin method on unstructured meshes of triangles, while the time integration is performed using either an explicit Runge-Kutta method or BDF formulae. A number of results involving biologically-inspired flight will be shown to illustrate the flexibility of the approach to handle high order approximations on complex geometries.

REFERENCES

- [1] J.PERAIRE and P.O.PERSSON, 'The compact discontinuous Galerkin (CDG) method for elliptic problems', to appear in the SIAM Journal for Scientific Computing, 2007.
- [2] P.O.PERSSON, J.PERAIRE and J.BONET, 'Discontinuous Galerkin solution of the Navier-Stokes equations on deformable domains', presented at AIAA Conference, AIAA-2007-0513, Reno, NV, January 2007.
- [3] D.J.WILLIS, J.PERAIRE and K.S.BREUER, 'A computational investigation of bioinspired formation flight and ground effect', presented at AIAA Conference, AIAA-2007-4182, Miami, FL, June 2007.
- [4] P.-O.PERSSON and J.PERAIRE, 'Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations', to appear in the SIAM Journal for Scientific Computing, 2007.