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ABSTRACT

This paper is devoted to an adaptive finite element method for elliptic problems using domain decom-
position techniques. Adaptive mesh refinement based on a posteriori error estimates is an essential
instrument for efficient numerical solving of PDES. Domain decomposition methods are very useful
when the original problem has different features on distinct regions of the initial domain, such as the
nonlinearity. A lot of work has been made (see,e.g, [1]) in this area and there are many applications
in diverse fields (see,e.g, [2]). We construct an adaptive finite element method for elliptic problems
(adaptive modified Uzawa method) using domain decomposition. Therefore, we can consider different
initial triangulation and an independent adaptive mesh refinement in each subdomain. We are going to
consider a linear stationary problem defined in a Ω domain, decompose the domain into two subdo-
mains Ω1 y Ω2, Γ12 is the interface, and we apply on each subdomain an adaptive element finite method
(A.F.E.M.) using mesh refinement based on a posteriori error estimative. Under these assumptions it is
not difficult to generalize the algorithm to the nonlinear case. The convergence is proved with respect
to a discrete solution in an space corresponding to a sufficiently refined mesh. We get the following
convergence result: Let Sea (Uj , Pj) be the sequence of solutions obtained by the adaptive modified
Uzawa algorithm. There exist positive constants C and δ < 1 such that

‖u− Uj‖V + ‖p− Pj‖M ≤ Cδj

where V andM are proper functional spaces. u and p are the discrete solutions on a sufficiently refined
mesh.



The starting point is the Hybrid Primal formulation of an elliptic problem : Find (u, p) ∈ V×Λ such
us
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with i = 1, 2 and [u] = u1 − u2. It is weel known that the rate convergence of the Uzawa algorithm
is very low to solve this kind of problems. In this work we modify the Uzawa algorithm in two
ways: First we will use different auxiliary operators to solve the equation 2 in order to accelerate
convergence. Second, we introduce mesh adaptivity (Adaptive Modified Uzawa algorithm) The
algorithm is described below:

Choose parameters ρ > 0 such us σ := ‖I − ρS‖L(Λ,Λ) < 1, 0 < γ < 1 and ε0 > 0; set j=1.

1. Given a finite space V0 and an initial approximation P0 ∈M0.

2. Compute Uj on Vj .

3. Update Pj onMj using Pj−1 and Uj .

4. εj ← γεj−1.

5. Compute Tj by adapting the mesh Tj−1, such that |Uj − u| < εj |
6. j ← j + 1.

7. Go to step 2.

Here S is the Schur complement associated to the Uzawa algorith. The pair (Uj , Pj) is the discrete
solution for an approximated problem. We will show some numerical results obtained using the
AMUADD algorithm, namely problems with some singularity in a well defined region of the original
domain. Hence we could do a decomposition domain isolating the singularity on a given subdomain.
Numerical tests show that the method could be adapted to nonlinear problems. In booths cases the
computation time and the computational resources are less than without domain decomposition. To
conclude we may say that AMUADD is suitable to use on parallel machines.
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