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ABSTRACT

The simplest method used to improve the accuracy of a numerical solution with a limiting computational
cost is called Richardson extrapolation (RE). It applies to many different discretization frameworks and
is fairly easy to implement. Its use in Computational Fluid Dynamics (CFD) [1, 2, 3] is rather popular
and has brought a lot of attention. Among the variations of the RE method that have been studied are

• approximate a fine grid solution instead of an asymptotic limit,

• works with non embedded grids [3],

• retrieve the convergence order of the method if it is an unknown [4].

All these extensions rely on the a priori existence of an asymptotic expansion of the error such as a
Taylor formula, and make no direct use of the PDE formulation. As a consequence RE methods are
extremely simple to implement. But in practice, meshes might not be fine enough to satisfy accurately
the a priori convergence estimates that are only asymptotic in nature. RE is then unreliable. From the
numerical analysis of RE extrapolation formula, one can see that these technique are fairly unstable,
and sensitive to noisy data [5]. To cope with these limitations of RE, Garbey and Shyy have introduced
recently [5, 6] the so-called Least Square Extrapolation method (LSE) that is based on the idea of
finding automatically the convergence order of a method as the solution of a least square minimization
problem on the residual. The LSE method is based on the post-processing of data produced by existing
PDE codes. The method has been described in detailed in [5]. From a practical point of view, the authors
have used a two dimensional turning point problem exhibiting a sharp transition layer as well as a finite
difference approximation of the cavity flow problem to show that the LSE method is more reliable
than RE while the implementation is still fairly easy and the numerical procedure inexpensive. Garbey
and Shyy have recently extended the framework to a general optimized extrapolation solution (OES)
method that provides error estimates for arbitrary norm [6].

In this paper, we focus on improving the accuracy for solutions of parabolic problems using OES. The
difficulty is to deal with space and time together in the extrapolation formulation.



There are a number of interesting papers on a posteriori estimate for unsteady problems [7, 8, 9].
However, most often unsteady problems

∂u

∂t
= N [u], (1)

are analyzed in their semi-discretized form

−dtN [u] + u = F, (2)

where dt is the time step, to reuse the same a posteriori framework than for the steady problem.

We propose to use our optimized extrapolated solution method to produce error estimate using grid
solutions that can be produced by various discretization methods. This approach might be combined to
existing a posteriori estimate when they are available, but is still applicable as a better alternative to
straightforward RE when such stability estimate are unavailable.

In this paper, we pursue the research initiated in [5] to generalize the framework to parabolic problems.
We use then OES with coarse grid solutions that have different meshes in space and time. This is
therefore more than a simple extension of the previous OES method to the semi-discretized problem
(2). We will investigate the power and limit of this new OES with a broad variety of non-linear parabolic
problems.
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