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ABSTRACT 

Fines migration in a block cave can be characterised by the faster movement of fine 
material towards the draw point in comparison to larger, blocky material. This 
phenomenon can result in the percolation of waste material into the fragmented 
orebody, thereby reducing the concentration of mineralisation in the caved material and 
consequently reducing operational efficiency [1]. 

A greater understanding of the kinematic behaviour of fines and ore within the cave 
during draw is integral to the solution of this problem. Some of the current approaches 
include field marker monitoring, laboratory scale experiments, and computational 
techniques such as the discrete element method (DEM). Whilst the DEM has been 
successfully employed to simulate the dynamics of large blocks in a cave during draw, 
the extension of this approach to include the migration of fines would require the 
simultaneous solution of elements greater than 2m (blocks) and smaller than 50mm 
(fines). In an industrial size, 3D model this method would require in the order of 108 
particles and subsequently be intractable. 

In this paper, a novel computational approach is presented that incorporates the lattice 
Boltzmann method (LBM) in a nonlinear form for the simulation of the fines with the 
DEM for the simulation of large blocks in a fully coupled framework. The LBM [2,3] 
has emerged as an alternative to conventional computational fluid dynamics (CFD) 
methods, which employ a spatial and temporal discretisation of the Navier-Stokes 
equations. Some of the advantages of the LBM over Navier-Stokes CFD include the 
potential for using a Eulerian grid, high space-time resolution, full scalability on parallel 
computers, as well as efficient and robust implementation in complex fluid domains [4]. 

A key advantage of the LBM over traditional CFD [5] is its ability to be efficiently and 
robustly coupled to a large number of discrete elements. The main computational 
obstacles in Lagrangian CFD approaches are the need for continuous mesh geometry 
adaptation to prevent severe mesh distortion, and the generation of a valid mesh for 
dense particle flows where sustained discrete element contact is a dominant physical 
phenomenon. In the context of the LBM, a number of LBM fluid-solid interaction 
technique have been developed, one of which is the immersed moving boundary method 



 

by Noble and Torczynski [6]. Employing DEM to account for particle-particle 
interactions gives rise to a fully coupled LBM-DEM computational framework capable 
of simulating dense phase particle suspensions. The explicit time stepping scheme of 
both LBM and DEM, when coupled using a dynamic time step update algorithm, makes 
this strategy a competitive numerical tool for the simulation of particle-fluid systems. 
Such a coupled methodology was first proposed by Cook et al [7] in simulating particle-
fluid systems dominated by particle-fluid and particle-particle interactions. 

To model the motion of fine particles in a block cave as a non-Newtonian fluid the 
standard LB formulation must be extended to capture the constitutive behaviour of a 
bulk material. In the relatively small volume of work dedicated to nonlinear fluids, the 
power law model is the most popular choice for description of the behaviour of non-
Newtonian fluids in the LBM. For example, the implementation of power law fluids 
within the LB formulation has been undertaken [8] to investigate both pseudoplasticity 
(shear thinning) and dilatancy (shear thickening) behaviour. A similar approach is 
adopted in this work along with investigations of Bingham plastic and Mohr-Coulomb 
[9] material models in the LBM. 

This paper presents some of the issues relevant to this novel approach to fines migration 
modelling, such as fluid-solid interaction, the coupling of explicit schemes, and the 
characterisation of a bulk material as a non-Newtonian fluid. Preliminary 2D results are 
presented which indicate the capability of the framework for application in field-scale, 
3D problems. 
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