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ABSTRACT

Understanding the behavior of high frequency MEMS resonators is of high interest due to their potential
applications as on-chip, small sized, energy efficient, frequency references or signal processing filters.
Their performance is determined by the quality factorQ, which measures the sharpness of a resonance
peak and is inversely proportional to the amount of damping in the system. A highQ is desired, thus
damping must be minimized in the design of the device.Q can also be expressed in terms of the
complex-valued eigenvalues of the systemω asQ =

|ω|
2Imag[ω] . This expression enables one to formulate

the problem of computingQ as a matrix eigenvalue problem, where the matrices are obtained from a
numerical discretization of the governing equations of motion of the system.

Among the many damping mechanisms that exist, it has been observed that acoustic loss is a prominent
source in the design of high frequency resonators. In this mechanism, the motion of the resonator
couples with the underlying substrate through its anchors,sending outgoing propagating waves which
never return, resulting in energy loss. To model this phenomenon numerically, one must apply proper
wave absorbing boundary conditions at the computational domain boundary, in order to mimic the
infinite domain behavior. The technology of Perfectly Matched Layers(PML)[1] is selected here to
serve this purpose.

The difficulty of solving for eigenvalues of the system aboveare due to the application of the PML,
the sensitivity of acoustic loss to the system design, and the modes of interest. Application of the PML
results in complex-valued symmetric non-Hermitian mass and stiffness matrices and quite fine meshes
are required for accurate computations. The magnitude of acoustic loss is sensitive to the geometric
design of the device, and in certain cases 2-D models of the actual 3-D device may not serve as accurate
models to estimate damping. The eigenvalues correspondingto modes of interest may not be at the
exterior of the spectrum. Thus to obtain accurate solutions, one requires a method to compute interior
generalized eigenvalues of large-scale complex-valued symmetric matrices through parallel computing.

The solution method chosen is the Jacobi-Davidson QZ(JDQZ)algorithm[2] combined with a geo-
metric multigrid preconditioner to solve the correction equations. Compared to Krylov subspace-based



methods such as shift-and-invert Arnoldi, the Jacobi-Davidson schemes does not require machine pre-
cision accurate linear solves to expand the projection subspace, which is ideal when the linear systems
are large and iterative solves are the only choice. To decrease the number of iterations in the iterative
linear solve, geometric multigrid, one of the few methods that is known to scale effectively to large me-
chanical problems is used. The different levels in the multigrid scheme are constructed automatically
by parameterizing the block-generated mesh by a few length scale variables such as the approximate
distance between adjacent nodes. The prolongators betweentwo levels are then computed by evaluat-
ing nodal points in the finer level mesh at the coarser level mesh shape functions. The smoother used
is the standard Gauss-Seidel scheme. To enhance JDQZs speedof convergence to the desired eigen-
value and mode, the initial shift and starting vector is obtained from an approximation constructed from
the coarser grids in the multigrid hierarchy. Once the coarse problem eigenvalue problem is solved,
the eigenvalue is used as the initial shift, and the corresponding eigenvector is prolongated with the
multigrid prolongator for the starting vector. The algorithm is implemented in the MEMS simulation
software HiQLab[3] combined with the well established PETSc[4] library built on top of MPI.

A 20[µm] diameter polysilicon disk resonator is simulated and a radial contour mode at 1.18[GHz]
is computed. Fig.1 shows a 2D slice of the resonator through the center post and substrate, where the
colors shows thex andz direction displacements of the mode. One can see wave propagation through
the substrate and the damped behavior in the PML region at theboundary of the computational domain,
as well as the z direction bending type of motion in the disk. The convergence ofQ and frequency with
respect to the discretization size is given in Fig.2, for linear, quadratic, and cubic finite elements. The
computations are conducted on 16 processors. For the maximum size problem of 6 million degrees of
freedom, only 2 outer JD iterations and under 80 inner GMRES iterations per JD iteration is required,
showing the effectiveness of the proposed method.

Figure 1: Eigen mode at 1.18[GHz],
Top:x disp, Bottom: z disp
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Figure 2: Convergence ofQ and fre-
quency
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