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ABSTRACT

Reliable and efficient strategies for simulation of cracked structures are of great interest in e.g. aerospace
industry. To avoid catastrophic failure of damaged key components, reliable tools are required in order
to precisely predict crack growth resulting from repeated loadings. Whereas two-dimensional crack
propagation is now commonplace in industry, the rapid increase of computing power also provides the
ability to treat three-dimensional cracked structures and stimulates the development of algorithms for
fatigue crack growth for three-dimensional configurations.

The approach presented herein deals with a linear elastic structure subjected to both mechanical loading
and imposed temperature field. The initial state is characterised by an a priori know residual stress field.
An energetic fracture mechanics approach is invoked in order to simulate the evolution of the structure,
under the assumption of a planar crack path. For a stable growth, the method consists in seeking the
minimum of the total structure energy E = J + D (where J is the mechanical potential energy and
J and a fracture energy D), with the respect to the structure displacement field u and all possible
admissible crack geometries Γ [1]:

E (u,Γ) = min
(u?,Γ?)

E (u?,Γ?)

In a general case, solving such problem can be very costly [2]. However, simpler procedures occur
when a single, connected crack is considered together with a fracture energy of Griffith type [3,4].

Thus, the minimisation problem can be solved by an incremental-iterative method. For each load incre-
ment, the final displacement u and crack configuration Γ are found by iteratively solving the stationarity
equations associated to the above minimization problem. Each iteration therefore consists of finding u
from

E,u (u) = 0⇔ D,u (u) + J,u (u) = 0,

which is a usual linear elastic analysis. Then, the crack surface Γ is updated by solving the stationarity
equation

E,Γ (Γ) = 0⇔ D,Γ (Γ) + J,Γ (Γ) = 0



using a Newton-Raphson method. This step requires the first-order and second-order domain derivatives
of the elastic potential energy and the fracture energy, applied to domain perturbations that correspond
to infinitesimal crack growth, in order to find the crack increment from the linearized equation

E(2) (∆Γ,θ?) = −E(1) (θ?) , ∀ θ? adm.,

where E(1) and E(2) are respectively the first-order and second-order derivatives of the total structure
energy with respect to the crack front advance and θ? are trial crack growth velocities that are used as
test functions.

Analytical expressions of the energy derivatives E(1) and E(2) are established using the G-θ method
initiated by Destuynder and Djaoua [5], and in particular extended to cases where given residual stress,
body load or temperature fields occur in the region of the crack front. New terms, not shown here for
brevity, then arise in E(1) and E(2) as a result of these added effects.

According to the Griffith assumption, the fracture energy D is defined in terms of the density of surface
energy released by crack growth. For monotonic loading and stable growth, this density is classically
taken constant and equal to a critical value Gc. For fatigue problems with the crack growth governed
by a Paris-type law which is the main focus of this communication, the incremental fracture energy D
is defined so as to recover the Paris law from the first-order stationarity condition for E :

D =
∫
γ

mC∆N
m+ 1

(
∆a(s)
C ∆N

)1+ 1
m

ds

where ∆a(s) denotes the local crack advance at a generic point of the current crack front γ with ar-
clength coordinate s.

This energetic approach has been implemented within the ZeBuLoN finite element environment
(www.nwnumerics.com) with a robust remeshing process. The ability of the proposed algorithm to
compute planar fatigue crack growth in the presence of residual stresses or thermal loadings is demon-
strated through numerical experiments (which will be shown during the conference) on a thermally
loaded penny-shaped crack, for which an analytical solution is available for comparaison purposes.
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théorie de la rupture fragile. Mathematical Methods in Applied Science, Vol. 3, 70–87, 1981.


