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ABSTRACT 

Rubber materials useed in engineering fields are known to possess many complicated 
properties such as Mullins’ effect, rate-dependency, hardening and eternal deformation. 
Although the phenomena have been modeled by hyperelasticity with damage[1], 
viscoelasticity[2], viscoplasticity[3] and mixed models of these three types[4],[5], their 
performance for reproducing real behavior seem to be insufficient, especially under 
cyclic deformation in several large strain levels.  
This work presents a new constitutive model for rubber-like solids with emphasis on 
reproducing hysteretic behavior in different strain levels. The model employs a 
Hyperelastic-Damage(:HD) element for expressing direction of stress evolution, and 
multiple Visco-Elasto-Plastic (:VEP) elements are connected to HD element in parallel 
for reproducing hysteretic behavior. In the formualtion, material logarithmic strain 
tensor : 1/ 2ln=H C  ( C : right-Cauchy-Green tensor) is used as a measure of relative 
deformation, while its stress-conjugate is approximated by rotated Kirhhoff stress tensor 

: T= ⋅ ⋅T R τ R  ( τ : Kirhhoff stress tensor, R : rotation tensor) for simpicity[6]. Then, the 
total free-energy of the model is described as: 
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where 0Φ  and kΦ  are the free-energies of HD element and VEP elements, respectively, 
d (scalar) and (e)

kH (tensor) are internal variables for inelastic behavior. As usual, 0Φ  is 
divided into isochoric and volumetric parts as follows. 

0 0 0 1( , ) (1 ) ( ) ( )d d UψΦ = − ⋅ + ∆H G  with : dev[ ]=G H  and 1 : tr( )∆ = H   (2) 
Detailed forms of 0ψ , 0U  and an evolution equation of d  are: 
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where 1 2 3( , , )ζ ζ ζ  is the pricipal values of G , and kµ , kα  ( 01,2, ,k N= ), 0κ , 0r , 0m  and 

0β  are parameters of HD element. 
The key features of the model are forms of VEP elements, which only express isochoric 
behavior and employ an unified visco-elastic/elasto-plastic/visco-plastic model. In 



 

addtion, free-energies of VEP elements are extended by introducing a new function 
( )kΛ G , which we call ‘Hardening-Rate’, in (e)( , )k kΦ H H  as: 

(e) (e)( , ) ( ) ( )k k k k kψΦ = ⋅ΛH H G G  with (e) (e): dev[ ]k k=G H    (5) 
Detailed forms of kψ , kΛ  and evolution equations of (e)

kH  are as follows. 
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where (e)
kµ , km , kθ , kε , kλ  and kN  are parameters of VEP elements. 

Finally, the stress-strain relation is obtained under condition that the following 
approximated Clausius-Duhem inequality[6] is satisfied in arbitrary deformation 
processes. 

: : : 0= −Φ ≈ −Φ ≥τ d T HD  ( d : defomation rate tensor)  (8) 
Fig.2 shows comparions of the propsed model with two VEP elements and experimental 
results of simple tension and simple shear tests, and it is found that the model can 
accurately reproduce complex hysteretic behavior under cyclic deformation in several 
strain levels of different deformation types. 
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Fig.2  Comparison of the propsoed model with experimental results 
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