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ABSTRACT 

In this work we focus on the development of a finite element (FE) model to analyze the 
adhesive contact between two elastic spheres. The hallmark of the FE model is the use of a local 
contact model where the surface traction at a point on the interacting surfaces is dependent on a 
single parameter – the distance measured along the normal to the companion surface.  The 
resultant load on the spheres is computed using the current deformed area.  The local contact 
model is used to study the implications of the Derjaguin approximation and the assumption of 
small deformation (small strains and rotations) in the existing models.  Using the Derjaguin 
approximation, the distance between any two points on the interacting surfaces is computed as 
being perpendicular to plane of first contact – the tangent plane passing through the points of 
first contact.  The small deformation assumption treats the interacting surfaces as slightly 
deformed so that the resultant load on the spheres can be computed using the reference 
projected area on the tangent plane.   

 

 

 

 

 

 

In the FE model, a biased mesh with dense meshing close to the contact area is used to 
accurately capture the peak tensile traction.  The smallest elements have their side length of the 
order of the interatomic equilibrium distance.  Both linear and quadratic interpolation elements 
are used to ensure convergence of the solution. 

 

 

 

 

Figure 2.:  
Deatils of a 
section of the 
FE mesh. 

Figure 1:  
Illustration of contact 
traction with (left) and 
without Derajaguin 
approximation. 



 

In the solution process, the ill-conditioned stiffness matrix during the unstable jump to contact 
and pull-off is circumvented using viscous damping and those solutions are later verified by the 
arc-length method.  In addition to the standard checks used in the iterative solvers, manual 
verification of the magnitude of the peak tensile traction and the ratio of the energy damped to 
the strain energy of the spheres in the stable portion is done to obtain accurate solutions.  The 
results from FE analysis using Lennard-Jones type (LJ) contact laws are compared with the 
values from existing adhesion models at different values of modified Tabor parameter µ .  The 
modified Tabor parameter is obtained by approximating the LJ force law as a triangular force 
law with a range rα  instead of using the interatomic equilibrium distance as the range as in the 
original Tabor parameter.   

The pull-off load values for small stiff spheres with weak adhesion (small values of µ ) 
compare well with the existing models.  For large values of µ , the FE results predict an 
increasing trend of the normalized pull-off load instead of approaching the JKR limit and the 
magnitude of the pull-off load at was dependent of the effective radius of the spheres R.  This 
discrepancy is attributed to the failure of the existing models to account for the stretch of the 
interacting surfaces due to the radial component of the surface traction. The magnitude of the 
radial component of traction is dependent on the angle mismatch between the normal to the 
deformed surface and the surface traction at that point. In larger spheres, the angle is small 
leading to small stretches.  In general the larger pull-off load is due to the integration of the 
compressive tractions over a smaller area (stretch ratio 1λ < ) and the tensile tractions over a 
larger area ( 1λ > ) 
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Figure 3: Pull-off load values (Pc) from the 
FE analysis with the existing models at 
different values of  R and µ .  

Figure 4: Maximum stretch ratio.  
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