A multilevel Galerkin boundary element method

*Jinyou Xiao ${ }^{1}$, Lihua Wen ${ }^{2}$ and Johannes Tausch ${ }^{3}$
${ }^{1}$ College of Astronautics, Northwestern Polytechnical University, Xi'an 710072, PR China
xiaojy@nwpu.edu.cn
${ }^{2}$ College of Astronautics, Northwestern Polytechnical University, Xi'an 710072, PR China lhwen@nwpu.edu.cn
${ }^{3}$ Department of Mathematics, Southern Methodist University,
Dallas, TX 75275, USA
tausch@mail.smu.edu

Key Words: Boundary Element Method, Multilevel Approximation, Data-sparse.

Abstract

The boundary element method (BEM) is a well known numerical method in the analysis of many physical problems. The traditional BEM, however, often leads to a dense matrix A_{h}, thus setting it up and performing a matrix-vector multiplication is an $\mathcal{O}\left(N^{2}\right)$ operation, where N is the degrees of freedom. Different schemes have been developed to reduce the complexity from $\mathcal{O}\left(N^{2}\right)$ to an almost linear complexity $\mathcal{O}\left(N \log ^{a} N\right)_{a \geq 0}$, e.g., the panel clustering technique [3], multipole expansion method [2], hierarchical matrices (\mathcal{H}-matrices) [4] and the wavelet compression method [1]. In this paper, first we propose a procedure to coarsen the standard boundary element space to produce a sequence of lower-dimensional subspaces of it. Then the new coarsening bases are used to construct a data-sparse approximation $A_{\mathcal{H}}$ of the boundary element matrix A_{h} arising from the discretization of boundary integral equations by Galerkin method. This method has $\mathcal{O}(N)$ complexity and is suitable for solving problems with complicated surfaces in the three dimensional space. It can be recognized as a generalization of the wavelet Galerkin BEM in [1]. The basic ideas are as follows.

1. Multilevel bases

We generate a sequence of subspaces $V_{2 \leq j \leq J}$ of boundary element space X_{h}, i.e., $V_{2} \subset V_{3} \subset \cdots \subset$ $V_{J}=X_{h}$ based on the hierarchical subdivision of the boundary Γ, see e.g., [1,2]. Let \mathscr{C}_{j} be the set of non-empty cubes on level j obtained by the space subdivision. Due to the continuous subdivision, certain father-son relations is assigned to cubes in \mathscr{C}_{j} and \mathscr{C}_{j+1}.
The key to our construction is the coarsening (transform) matrices Q_{c} for cube $c \in \mathscr{C}_{2 \leq j \leq J} . Q_{c}$ are obtained via the singular value decomposition (SVD) of the moment matrices M_{c} (see [1] for definition). If Q_{c} are obtained, let $\Phi_{\text {sons(c) }}$ consists of all the basis functions in the sons of c, then the basis functions in c is obtained by

$$
\Phi_{c}=Q_{c}^{\top} \Phi_{\operatorname{sons}(c)}, \quad c \in \mathscr{C}_{j}, 2 \leq j \leq J
$$

Note that when $c \in \mathscr{C}_{J}, \Phi_{\text {sons }(c)}$ consists of boundary element basis functions in c. By performing the above transformation recursively from J to 2 , we obtain a sequence of multilevel coarsening boundary element bases. The complexity of this construction is $\mathcal{O}(N)$.

2. Matrix approximation

The multilevel approximation method combines many aspects of the current fast BEMs, e.g., [1-4]. Matrix A_{h} is decomposed according to the neighbors of cubes in every level; that is

$$
A_{h}=A_{\mathrm{near}}+\sum_{j=2}^{J} A_{j}
$$

where $A_{\text {near }}$ consists of the interactions of boundary element basis functions in the neighbors and is computed using quadratures as in the traditional BEM. A_{j} consists of the interactions of boundary element basis functions in the interaction lists (see [2]) in level $2 \leq j \leq J$.
Let $A_{c, c^{\prime}}^{\phi}$ consists of interactions of coarsening basis functions in c and c^{\prime}, i.e.,

$$
A_{c, c^{\prime}}^{\phi}=\left\langle\Phi_{c, \mathrm{~L}}, \mathcal{K} \Phi_{c^{\prime}, \mathrm{R}}^{\top}\right\rangle
$$

where " R " and " L " in the subscripts indicate the right and left basis [1], and A_{j}^{ϕ} be the matrices obtained by replacing the blocks corresponding to c and c^{\prime} in A_{j} by $A_{c, c^{\prime}}^{\phi}$. Then we show that A_{j} can be approximated as

$$
A_{j} \approx \tilde{A}_{j}:=\left(Q_{J, \mathrm{~L}} \cdots Q_{j, \mathrm{~L}}\right) A_{j}^{\phi}\left(Q_{j, \mathrm{R}}^{\top} \cdots Q_{J, \mathrm{R}}^{\top}\right)
$$

where Q_{j} are diagonal block matrices consists of transform matrices Q_{c} of all j-level cubes. Thus, we achieve our multilevel approximation of A_{h}

$$
A_{h} \approx A_{\mathcal{H}}:=A_{\text {near }}+A_{\text {far }}
$$

where

$$
A_{\mathrm{far}}=\sum_{j=2}^{J} \tilde{A}_{j}=Q_{J, \mathrm{~L}}\left(A_{J}^{\phi}+Q_{J-1, \mathrm{~L}}\left(\cdots+Q_{3, \mathrm{~L}}\left(A_{3}^{\phi}+Q_{2, \mathrm{~L}} A_{2}^{\phi} Q_{2, \mathrm{R}}^{\top}\right) Q_{3, \mathrm{R}}^{\top} \cdots\right) Q_{J-1, \mathrm{R}}^{\top}\right) Q_{J, \mathrm{R}}^{\top}
$$

The approximate matrix $A_{\mathcal{H}}$ obtained in this way is data-sparse (only few data are needed for its representation) and typically has a hierarchical structure (see [4]). Thus the computational operations and memory requirement of $A_{\mathcal{H}}$ is $\mathcal{O}(N)$. An matrix-vector multiplication scheme with $\mathcal{O}(N)$ operations is also presented according to the definition of $A_{\text {far }}$. The validation of the method is verified by numerical examples.

REFERENCES

[1] J. Tausch. "A variable order wavelet method for the sparse representation of layer potentials in the non-standard form". J. Numer. Math., Vol. 12, 233-254, 2004.
[2] J. Tausch. "The variable order fast multipole method for boundary integral equations of the second kind". Computing, Vol. 72, 267-291, 2004.
[3] S.A. Sauter. "Variable order panel clustering". Computing, Vol. 64, 223-277, 2000.
[4] S. Börm, L. Grasedyck and W. Hackbusch. "Introduction to hierarchical matrices with applications". Eng. Anal. Bound. Elem., Vol. 27, 405-422, 2003.

