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ABSTRACT

A recent study [1] points out that the convergence of finite element methods that use H(Ω,div)-
compatible finite element spaces deteriorates on non-affine quadrilateral grids. This deterioration is
particularly troublesome for the lowest-order Raviart-Thomas element, because it implies loss of con-
vergence in some norms for finite element solutions of mixed and least-squares methods. In this paper
we show that a reformulation of finite element methods in terms of the so-called natural mimetic diver-
gence operator [2] restores the order of convergence.

Reformulations of mixed Galerkin and least-squares methods for the Darcy equation illustrate our ap-
proach. We prove that reformulated methods converge optimally with respect to a norm involving the
mimetic divergence operator. Furthermore, we prove that standard and reformulated versions of the
mixed Galerkin method actually coincide, but that the two versions of the least-squares method are gen-
uinely different. The surprising conclusion is that the degradation of convergence in the mixed method
on non-affine quadrilateral grids is superficial, and that the lowest order Raviart-Thomas elements are
safe to use in this method. However, the breakdown in the least-squares method is real, and there one
should use our proposed reformulation.
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