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ABSTRACT 

Recently, a new class of elastoplasticity models for geomaterials has been proposed 
[1,2]. In contrast to existing modeling paradigms, the new framework is variational in 
nature. Essentially, the framework makes use of a generalized form of von Mises’s 
principle of maximum plastic dissipation given by 
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where Ĉ , G , and V  are constitutive moduli. The associated Karush-Kuhn-Tucker 
optimality conditions are given by  
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These equations define a class of models capable of capturing the typical features of 
geomaterials. In particular, any “effective flow rule” can be accommodated by choosing 
the constitutive moduli appropriately. One such choice [1,2] leads to the following 
governing equations: 

 
[ ( , ) ( , )]

( , ) 0, ( , ) 0, 0

F F

F F

σ κλ

λ

λ λ

= + ∇ + ∇

= +

≤ = ≥

C S

S h

ε σ σ κ σ κ

κ σ

σ κ σ κ

T

 (3) 

 

where C ,  S , and h  are new (physical) constitutive moduli. Thus, the effective flow 
rule is governed by the modulus S  which is not present in conventional elastoplastic 
models.  
 
Straightforward manipulations of the governing equations (3) lead to the following 
incremental relation between stresses and strains: 
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The “continuum” elastoplastic tangent modulus is thus always symmetric. 
 
The governing equations (2) are easily extended to finite-size increments. Using a 
backward Euler approximation we have 
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where Δε  is considered given. These equations follow from a maximization principle 
given by 
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or, equivalently, by  
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where 
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This is a standard closest-point projection problem [3] which can be solved either 
“directly”, by application of Newton’s method to (6), or by means of more elaborate 
methods from the optimization literature [4].  
 
The finite-step material-point principle (7) can be extended to the spatial domain of 
interest by the following Hellinger-Reissner type principle:  
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where 1 1n n n+ +Δ = −u u u  are the displacements, b  are the body forces, and t  are the 
tractions. This problem may be discretized by finite elements and subsequently solved 
using the conventional two-stage procedure of Simo [3] or by means of the optimization 
inspired scheme proposed by Krabbenhoft et al. [5]. In the presentation both approaches 
will be considered.  
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