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ABSTRACT

Recently, a new class of elastoplasticity models for geomaterials has been proposed
[1,2]. In contrast to existing modeling paradigms, the new framework is variational in
nature. Essentially, the framework makes use of a generalized form of von Mises’s
principle of maximum plastic dissipation given by

maximize o'é—0'Co—k'Gk —k'Vo—0o'V'&
subjectto F(o,k) <0
where C, G, and Vv are constitutive moduli. The associated Karush-Kuhn-Tucker
optimality conditions are given by
¢ =C6 + V'K + AV, F(0,K)
0 = V6 + Gk + \V,.F(o,K)
F(o,k) <0, \F(o,k) =0, A > 0

These equations define a class of models capable of capturing the typical features of
geomaterials. In particular, any “effective flow rule” can be accommodated by choosing
the constitutive moduli appropriately. One such choice [1,2] leads to the following
governing equations:

¢ =Co + NV, F(o,k)+ SV, F(o,k)|

f =86 + Ah
F(o,k) <0, \F(o,k) =0, A >0
where ¢, S, and h are new (physical) constitutive moduli. Thus, the effective flow

rule is governed by the modulus s which is not present in conventional elastoplastic
models.

Straightforward manipulations of the governing equations (3) lead to the following
incremental relation between stresses and strains:

1
eE=C%, C? =C+—=aa'
o +H

where
a=V,F(o,k)+S'"V,.F(o,k), H=-h"V, F(o,k)
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The “continuum” elastoplastic tangent modulus is thus always symmetric.

The governing equations (2) are easily extended to finite-size increments. Using a
backward Euler approximation we have
Ae = C(U7z+1 - o'n) + VT(F‘"n+1 - K’n) + )‘n+1vaF(o’n+17K'n+l)
0= V(Un+1 - 0'71) + G("':n+l - K’n) + >‘71+1VNF(0'71+17K‘17,+1) (6)
F(U7z+1vnn+1) S 07 A.71+1F(0'71,+17K’n«kl) = 07 A 2 0
where Ae is considered given. These equations follow from a maximization principle
given by

maximize X;HAQ - %(Xnﬂ — Xitr )T L(Xn+1 — Xir)

7
subjectto  F(xp41) <0 (7)
or, equivalently, by
maximize  —3(Xn+1 — Xor) L(Xnt1 — Xir) 8
subjectto  F(xn41) <0 ®)
where
o € o, + C!Ae c v’
XZ[KZ]’ o = 0 1) Xtr: K’n ? = V G (9)

This is a standard closest-point projection problem [3] which can be solved either
“directly”, by application of Newton’s method to (6), or by means of more elaborate
methods from the optimization literature [4].

The finite-step material-point principle (7) can be extended to the spatial domain of
interest by the following Hellinger-Reissner type principle:

min max fv {XrTLHAa - %AX:L—+1LAX7L+I + Auyyy(Vo, —b) } dv — fs Au,yitdS

Wyl Xt

subjectto  F(xp41) <0

where Au,,; = u,,; —u, are the displacements, b are the body forces, and t are the
tractions. This problem may be discretized by finite elements and subsequently solved
using the conventional two-stage procedure of Simo [3] or by means of the optimization
inspired scheme proposed by Krabbenhoft et al. [5]. In the presentation both approaches
will be considered.
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