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ABSTRACT 

Dislocations are the primary carriers of crystal plasticity and their collective dynamics 
define materials response to various loading conditions. Several computational 
approaches have so far been developed on the structure and motion of single 
dislocations [1]. The method of Dislocation Dynamics (DD) was designed for collective 
motion of many dislocations. In a 2D model, dynamics of dislocation lines is reduced to 
the motion of points confined to their glide planes. Despite capturing some of the 
physics of crystal plasticity, however, the real dislocation behaviour is strongly affected 
by the line tension and dislocation interactions in three dimensions. 3D DD simulations, 
using large computing resources, have begun to reveal more realistic (but still limited) 
results. Published 3D DD studies have been limited to strains of fractions of 2% and 
relatively low dislocation densities, even for simple problems such as tension of a 
periodic cell [2]. 

 By considering these limitations for 2D and 3D DD simulations, the mechanism-based 
discrete dislocation plasticity (2.5D DD) has been developed [3], where dislocations are 
modeled as line defects in a solid so that the long-range interactions between them are 
directly accounted for. For the purpose of computational efficiency, the short-range 
interactions are incorporated into the formulation through a set of constitutive rules that 
allow for approximate representations of key 3D dislocation mechanisms in a 2D 
framework. These rules account for junction formation and destruction, dynamic source 
creation and line tension. The Frank–Read (F-R) source is one of the dislocation glide 
multiplication sources. When the resolved shear stress is applied on the glide plane of a 
two-end-fixed dislocation line, the dislocation line bows out and rests in equilibrium in 
a semi-circular shape, with an equilibrated resolved shear stress, known as the critical 
nucleation stress τnuc. It can be shown that τnuc takes the general form of τnuc=βµb/L, 
where µ is the shear modulus, b is the magnitude of burgers' vector, L is the length of 
the initial dislocation line and β depends on poisson's ratio ν, the inner cutoff radius ρ 
and the dislocation line type [4]. τnuc is calculated based on the assumption of an infinite 
domain without any other dislocations stress field effects. In reality, however, the 
critical nucleation stress is affected by other F-R sources. It is proposed in this paper 



 

that the coefficient β should be modified by considering other dislocation sources 
effects. For this end, τnuc should be determined for an F–R source in a periodic array. A 
recently developed non-singular continuum elastic theory of dislocations is employed, 
which only requires positional continuity and is capable of describing the forces acting 
on all points in a discrete network of dislocations [5]. The F–R source in a finite cell 
with periodic boundary conditions (PBC cell) is simulated. Three aspects of the periodic 
boundary conditions are: (a) line connectivity, (b) initial dislocation arrangements 
compatible with PBC and (c) treatment of image stresses [1, 6]. For example, the effect 
of periodic boundary conditions for an F-R source generation of an initially edge 
dislocation in an FCC material (such as Cu) is depicted in Fig. 1. Because of the second 
aspect of periodic boundary conditions, two initially edge dislocation lines with 
opposite dislocation senses in different glide planes are simulated. This figure shows 
that the dislocation movement is confined by assuming periodic boundary conditions in 
the computational cell. Therefore, the greater resolved shear stress is needed for 
generating the F-R source. By decreasing the periodicity, the confinement of dislocation 
movement by PBC is increased. Higher levels of straining, generates denser F-R 
sources and put them closer to each other. As result, individual analyses of mechanisms 
are likely to affect the estimation of simulated material plasticity behaviour. 
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Fig. 1: The Frank-Read source in an FCC 
material. The solid line represents the critical 
shape of F-R source in an infinite domain, 
produced by τnuc, while the dashed line shows 
the shape of F-R source in the PBC cell 
produced by the same τnuc. 
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