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ABSTRACT

The numerical solution of the fast transient elastodynarpioblem by the finite element method is
influenced by the dispersion errors caused by both spatéhtiare discretizations. For example, nu-
merical attenuation or amplification, polarizations esrdhe change of phase and group speeds, nu-
merical diffraction and scattering can be mentioned. Degpfimany papers published on the subject,
little attention has been paid so far to higher-order eldmedelytschko and Mullen [1] were the first
to extend the dispersion analysis to quadratic one-diroaakfinite elements. The dispersion study of
the three-dimensional second-order Helmholtz equationaaaried out by Abboud and Pinsky [2]. In
Reference [3] recent results accomplished by the autherswanmarized, in particular the extension
of dispersion analysis to the eight-node serendipity fieiéenents. The outcome of the study includes
spatial dispersion diagrams, time-space diagrams set thpftwoexplicit (central difference method)
and implicit (Newmark) integration methods as well as thei@at number-mesh size indicataf/ A
error contour maps.

In this work, we focused on a detailed analysis of the massixrlamping schemes for plane square
quadratic eight-node elements with variable mass didtabuwsing the results of the aforementioned
study [3]. To motivate this work one can notice that the dffeness of explicit direct time integration
methods is conditioned by using diagonal mass matrix, wéitthils significant computational savings
and storage advantages. In the past decades several pexcéuat produced diagonally lumped mass
matrices were developed. For example, the row sum methodliagonal scaling method (Hinton-
Rock-Zienkiewicz or HRZ) [4] can be mentioned.

In general, mass matrix must satisfy certain condition$ @scsymmetry, conservation and positivity
which ensure its physical admissibility precluding nuroafiinstability nuisances. Therefore, the di-
agonal components of the lumped mass matrix must be podiiwthermore, masses corresponding
to the corner nodes and masses corresponding to the midsi#s oincide for the plane eight-node
element. The condition for the conservation of the totainelet mass yields: = 4(m; + ms), where



my andms denote the mass of the midside node and the corner nodectigspe If the massn; is
proportional to the total element massasm; = xm, then it holds for the mass, = (0.25 — x)m,
wherez is the mass parameter.
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Figure 1: Dispersion diagram of different lumped matricathwariable mass distribution for plane
square eight-node element (€00.5).

Comparison of dispersion properties of different lumpedrioes with variable mass parametefol-
lows from Fig. 1, where the relative error of the group spekdsc,/c; versus the normalized wave
length H/\ is drawn for the dimensionless Courant number €d).5. The valuez = 8/36 corre-
sponds to the HRZ procedure withx 2 Gauss quadrature, = 16/76 to the HRZ procedure witR x 3
Gauss quadrature and= 1/3 to the row sum method. It is clear that various nodal massiloligion
strongly influences dispersion properties of the lumpedioes. For example, it is shown that the HRZ
mass ratioc = 16/76 is far from optimum. On the contrary, the most accurate gmius surprisingly
obtained forz = 0.23 mass ratio whef2 % of total mass is coalesced into four midside nodes.

Note that this method can be directly applied to the rectmgright-node element, where the mass
coefficients in each axis are chosen proportional to thechsato. Furthermore, the proposed technique
can be generalized for the quadrilaterals of arbitrary sheging the piecewise constant shape functions
in the derivation of the lumped mass matrix of the unit sqedeenent so that it holds > 0.23. For the
extension to the 9-node Lagrangian element it is necesedangroduce additional mass parameter for
the middle-centred node whose determination is given byuffitment of the conservation of angular
momentum of element.
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