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ABSTRACT

The numerical solution of the fast transient elastodynamics problem by the finite element method is
influenced by the dispersion errors caused by both spatial and time discretizations. For example, nu-
merical attenuation or amplification, polarizations errors, the change of phase and group speeds, nu-
merical diffraction and scattering can be mentioned. Despite of many papers published on the subject,
little attention has been paid so far to higher-order elements. Belytschko and Mullen [1] were the first
to extend the dispersion analysis to quadratic one-dimensional finite elements. The dispersion study of
the three-dimensional second-order Helmholtz equation was carried out by Abboud and Pinsky [2]. In
Reference [3] recent results accomplished by the authors are summarized, in particular the extension
of dispersion analysis to the eight-node serendipity finiteelements. The outcome of the study includes
spatial dispersion diagrams, time-space diagrams set up both for explicit (central difference method)
and implicit (Newmark) integration methods as well as the Courant number-mesh size indicatorH/λ
error contour maps.

In this work, we focused on a detailed analysis of the mass matrix lumping schemes for plane square
quadratic eight-node elements with variable mass distribution using the results of the aforementioned
study [3]. To motivate this work one can notice that the effectiveness of explicit direct time integration
methods is conditioned by using diagonal mass matrix, whichentails significant computational savings
and storage advantages. In the past decades several procedures that produced diagonally lumped mass
matrices were developed. For example, the row sum method anddiagonal scaling method (Hinton-
Rock-Zienkiewicz or HRZ) [4] can be mentioned.

In general, mass matrix must satisfy certain conditions such as symmetry, conservation and positivity
which ensure its physical admissibility precluding numerical instability nuisances. Therefore, the di-
agonal components of the lumped mass matrix must be positive. Furthermore, masses corresponding
to the corner nodes and masses corresponding to the midside nodes coincide for the plane eight-node
element. The condition for the conservation of the total element mass yieldsm = 4(m1 + m2), where



m1 andm2 denote the mass of the midside node and the corner node, respectively. If the massm1 is
proportional to the total element massm asm1 = xm, then it holds for the massm2 = (0.25 − x)m,
wherex is the mass parameter.

Figure 1: Dispersion diagram of different lumped matrices with variable mass distribution for plane
square eight-node element (Co= 0.5).

Comparison of dispersion properties of different lumped matrices with variable mass parameterx fol-
lows from Fig. 1, where the relative error of the group speeds1 − cg/c1 versus the normalized wave
lengthH/λ is drawn for the dimensionless Courant number Co= 0.5. The valuex = 8/36 corre-
sponds to the HRZ procedure with2×2 Gauss quadrature,x = 16/76 to the HRZ procedure with3×3
Gauss quadrature andx = 1/3 to the row sum method. It is clear that various nodal mass distribution
strongly influences dispersion properties of the lumped matrices. For example, it is shown that the HRZ
mass ratiox = 16/76 is far from optimum. On the contrary, the most accurate solution is surprisingly
obtained forx = 0.23 mass ratio when92 % of total mass is coalesced into four midside nodes.

Note that this method can be directly applied to the rectangular eight-node element, where the mass
coefficients in each axis are chosen proportional to the aspect ratio. Furthermore, the proposed technique
can be generalized for the quadrilaterals of arbitrary shape using the piecewise constant shape functions
in the derivation of the lumped mass matrix of the unit squareelement so that it holdsx ≥ 0.23. For the
extension to the 9-node Lagrangian element it is necessary to introduce additional mass parameter for
the middle-centred node whose determination is given by thefulfilment of the conservation of angular
momentum of element.
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