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ABSTRACT 

When multilayered problems with large deformation are simulated by the SPH method, 
the physical quantities as density and strain at the material interface are often 
discontinuous. So it is necessary to introduce the discontinuous SPH (DSPH) method. 
D.F. Medina[1] realized the discontinuous problem and used the ghost particle technique 
to describe the discontinuous strain at the composite interface, but they didn’t give any 
recommendation on the dealing. M.B.Liu[2] proposed one-dimensional DSPH formula 
to describe the discontiuity and found it gave good results. However, they pointed out 
that it is difficult to determine the discontinuous interface and the key point kx  to 
perform a real application. That is the objective of this research.  

First of all, two-dimensional and three-dimensional DSPH expressions are derived 
based on the original idea of M.B.Liu[2]. In the field of solid mechanics, the 
discontinuous interface can be simplified as the materical interface, so the difficulty to 
find the discontinuous interface is avoided. The main contribution of this research is to 
introduce a convinent way to perform the DSPH to 3D problem.  

The first step of the way is to find the discontinuous interface during every time step. In 
the compuated domain if the material of an evaluated particle is different from the 
material of its surrounding particles, the material interface would be located between the 
two. Then the DSPH expression should be applied to this evaluated particle. The second 
step is to determine the key point kx  in the discontinuous expression. In one-
dimensional DSPH simulation[2], kx  is recommended to be taken as the most adjacent 
particle to the interface with different material against the evaluated one. However in 
real simulation it is hard to find the point kx  especially for large deformation, because 
particles moved very irregularly during the deforamtion. Here, a convinient way to 
determine kx  is derived based on the Taylor series expansion. In one-dimensional 
DSPH simulation[2], the computed domain Ω  is divided into two different material 
domains 1Ω and 2Ω . In our research the domain 2Ω  is re-divided into many small 
subdomains 2,1 2,, , nΩ ΩL  and let only one particle is included in each. Suppose the 
particle inside each subdomain is named 1, 2, ,j j jnx x xL L , respectively, the integral of the 
function on Ω  can be expressed as  
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Implemented Taylor expansion in each small subdomain, kx  can only be taken as 
, ( 1,2, )j tx t n= L  in each subdomain. That is, for every particle with different material 

from that of the evaluated particle, its corresponding kx  is taken as itself. This way to 
determine kx  is simple and can be easily applied in large deformation.The feasibility of 
the new way is validated numerically and Table 1 shows the comparison of different 
ways of choosing the key point kx .  
 

Table 1  Comparison for different kx  determinate ways 

kx  function 8 9 10 

kx ＝ 1kx f  1.1783% -0.688％ -6.607％ 
f x∂ ∂ 0% -2.222％ -4％ 

kx ＝ 2kx f 1.1783% 0.2429％ -0.197％ 
f x∂ ∂ 0% -2.778％ -5％ 

kx ＝ jx  f 1.1783% -0.688％ -5.852％ 
f x∂ ∂ 0% -2.222％ -3.5％ 

 

2D and 3D discontinuous functions are tested respectively by the initial SPH method 
(ISPH), CSPM[3] and DSPH method. The results are shown in Fig1 (a) and (b), which 
are the comparisons of function and its first derivative respectively. It is clear that the 
DSPH method is most appropriate for the description of discontinuous quantities.  

Further, the sensitivity of DSPH method is discussed and analyzed. It is found that when 
the function gradually changes from the discontinuity to the continuity, the DSPH 
behaves worse than ISPH. It is thought there maybe some conditions to judge the 
application of the DSPH method.  
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Fig.1  2D Comparison for discontinuous quantities simulations by different methods 
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