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ABSTRACT 

The mathematical formulation of the dynamics of constrained mechanical systems 
typically relies on systems of differential-algebraic equations (DAEs) where the 
differential part represents kinematic evolution equations and dynamic balance 
equations, while the algebraic part represents geometrical constraints. It is well known 
that the DAE nature of the governing equations often gives rise to difficulties in their 
numerical solution. In this regard, an important role is played by the inconsistencies 
between explicitly appended constraints and their time-integrals or time-derivatives (the 
so-called ‘hidden’ constraints). 

In fact, explicit and ‘hidden’ constraints are consequential at the exact mathematical 
level, standard time integration approaches methods typically do not preserve this 
property at the numerical level. As a consequence, one may face serious convergence 
difficulties, accuracy loss for the algebraic variables, and general stability problems. On 
the other hand, we know that – when possible – a minimal co-ordinate set approach, 
which leads to a set of ordinary differential equations (ODEs), does not suffer the 
troubles mentioned above. 

Therefore, we consider as a goal the reformulation of the problem that keeps the 
generality and flexibility of the redundant co-ordinate set approach (i.e. the DAE 
setting) while preserving the ‘geometric’ quality of the minimal-set approach. This 
quality is the same as the exact solution since it holds (a) at all relevant levels of 
differentiation, and (b) in a ‘pointwise’ manner, i.e. exactly at the time step boundaries, 
without approximations/averaging over the time step. 

In the development towards this goal, we review some general formulations for 
constrained system dynamics. We consider holonomic as well as non-holonomic 
constraints, showing the relationships between the classical Lagrange multiplier 
framework, the “μ& −Method” conceived some 20 years ago, and the recent “Embedded 
Projection Method” (EPM). The analysis is carried out looking at differential and 
variational implications, in both the Lagrangian and Hamiltonian frameworks. 

It is the Hamiltonian viewpoint, however, that reveals most helpful in understanding 
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how to take into account the intimate coupling of the algebraic and differential parts of 
the governing equations. This is done, in the EPM, by reformulating the problem in 
terms of fully unconstrained state variables in a modified phase space. In fact, the EPM 
can be seen as a general index reduction procedure from arbitrarily high DAE index to 
one in which constraints are not imposed on position-type variables only, since the 
corresponding restrictions are independently placed on velocity-type variables. These 
constraints, together with their time-derivatives, are used to define modified state 
variables which, under all respects, are free to evolve in their phase space. 

As a result, an index-1 DAE set is obtained, i.e. an ODE set complemented with 
algebraic equations that do not act as constraints, but as implicit definitions of internal 
variables. This automatically results in greater accuracy and stability of the numerical 
solution: constraints are exactly satisfied at all relevant levels (position, velocity, 
acceleration) by construction, and nominal accuracy is fully recovered for all involved 
quantities, irrespective of the chosen numerical integrator. 

In the discussion, it appears that the DAE index appears as a ‘measure’ of lack of 
information. In this regard, the EPM requires additional knowledge with respect to 
traditional approaches, but this additional knowledge does not constitute a burden in 
itself, since it is simply given by the constraint derivatives. The higher complexity of 
the procedure with respect to traditional approaches is paid back by a higher global 
quality of the numerical solution, together with a much improved numerical behaviour. 
Some numerical examples are included to illustrate the results predicted by the theory. 

In conclusion, the EPM provides a rationale for interpreting constraints in a more 
complete framework than with more conventional approaches, and particularly justifies 
clever, albeit heuristic, recipes such as the well known “GGL-method”. Furthermore, 
we conjecture that a fully consistent Hamiltonian variational formulation corresponding 
to the EPM holds, as seen with the closely related “μ& −Method”. 
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