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ABSTRACT

The eigenvalues of the Orr-Sommerfeld operator determine the stability of exponentially growing dis-
turbances in parallel and quasi-parallel flows such as Couette flows [3]. This work investigates the
sensitivity of these eigenvalues to modifications of the base flow. Our approach is to regard these modi-
fications as random quantities. Such base flow uncertainties may represent differences between the flow
in experimental conditions and its ideal numerical counterpart. This study reveals that those base flow
uncertainties can be destabilizing, although the linear stability theory (LST) predicts the Couette flow to
be unconditionally for all Reynolds numbers [3]. In fact, turbulence occurs in experiments at Reynolds
number as low as 300 [4]. Several authors have examined the possible causes of this disagreement.
Using a variational technique, Bottaro et. al have shown that very small base flow variations can dis-
place the eigenvalues towards the unstable region of the imaginary plane [1]. Schmid [2] examined the
response of the optimal energy growth of a profile subject to four localized random perturbations with
Gaussian peak magnitudes. However, the stochastic moments obtained from Monte Carlo simulations
showed that, despite the variation in the energy growth, the flow did not become unstable.

In this work, we use a Karhunen–Loeve (KL) spectral expansion to treat the base flow stochastic vari-
ation as a Gaussian random process. We consider the random process to exhibit some degree of cor-
relation in the cross-stream direction. We use a Gaussian covariance kernel with correlation length Cl
to represent this correlation. The orthogonal basis used in the KL decomposition are Hermite poly-
nomials. The chosen number of terms N in the expansion is dictated by the decay of the covariance
kernel eigenvalues. Examples of base flow realizations obtained from the KL expansion are shown in
Figure 1. Here, we choose a typical correlation length of Cl = 1 and we use N = 8 terms in the
expansion. A deterministic LST spectral solver is then coupled to a non-intrusive stochastic collocation
solver to propagate the base flow uncertainties through the system. The non-intrusive approach does
not require any substantial modifications to the deterministic solver. The evaluation of the solution mo-
ments is equivalent to computing multi-dimensional integrals over the probability domain. Different
ways of dealing with high-dimensional integrations can be considered depending on the prevalence of
accuracy versus efficiency. Here, we use a numerical quadrature of Gauss-type by full tensor products.
This approach is very accurate and remains computationally efficient for a moderate number of ran-
dom dimensions. Different sparse quadrature techniques are also investigated in order to speed–up the
process.

Table 1 lists the mean values µ and coefficients of variation Cv = µ/σ of the most unstable eigen-
value for different correlation lengths. The mean value decreases for increasing Cl which means that
it gets closer to the instable region for small Cl. We notice that Cl stops affecting the mean value for
Cl = 4 which corresponds to twice the channel width. The coefficient of variation keeps decreasing for
increasing Cl due to the change in variance. Figure 2 shows the variance of the first forty eigenvalues
(sorted by imaginary part). We observe that the variance increases for increasing Cl. Moreover, we have
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Figure 1: Comparison between ideal (solid) and randomly perturbed (dashed) Couette base flow velocity
profiles.

Cl = 1 Cl = 2 Cl = 4
µ -0.09345 -0.20528 -0.20863
Cv 0.70825 0.05971 0.02571

Table 1: Mean value and coefficients of variation of the most unstable eigenvalue for different Cl.
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Figure 2: Variance of the first forty eigenvalues, sorted by imaginary part, of the Orr-Sommerfeld oper-
ator for different stochastic perturbation correlation lengths.

found qualitative agreement with the existing literature that shows that the eigenvalues located at the
intersection of different branches are the most sensitive to changes. In addition to those results we will
also present the response of the transient energy growth and probability density functions of pertinent
quantities and introduce the notion of the most probable solution.
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