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ABSTRACT 
 
The surface displacement fields at the surface of topographical profiles under incidence of 
elastic plane waves (Rayleigh, P, SV and SH) can be computed using both the Indirect 
Boundary Element Method (IBEM) and the Method of Fundamental Solutions (MFS). In 
these approaches the diffracted or scattered field is constructed by means of discretized 
integral representations in terms of the Green function (which is the displacement at a given 
location due to a concentrated unit load in other point) and force densities (for IBEM) or 
forces (for MFS). Once such force densities or forces are obtained, the ground motion can 
be computed. The computation of ground motion rotations implies the application of the 
rotational operator to the displacement field. This is done using either numerical derivatives 
or analytical expressions to compute the rotational Green tensor. The boundary integral 
computation requires dealing explicitly with the singularity of Green function. 
 
The 2D Green function is given by }2-)+){(8/(=),( jiijij γγBδBAρiξxG . Where iγ = 
direction cosine for direction i of vector fromξ  to x , ijδ = Kronecker delta, we also have 
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Applying  ½  the rotational operator to the Green function components we can easily obtain  
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Grot i . Here the first 

index indicates rotation while the second indicates force directions, respectively. The Green 
function derivative is given by 
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where ( ) ( ) ( )zzHzD 2
1= . After some algebra we have ( ) ( ) 3
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The inplane case (SH) is simpler. The Green function is ( ) ( )krHµiG 2
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These analytical expressions in 2D are essentially the same for both the in-plane and the 
anti-plane cases. They display an anti-symmetric behavior that also appears in the corres-
ponding expressions in the full 3D case. The contribution of Green function singularity is 
identified and the IBEM set of expressions to compute displacements, tractions and 
rotations are given. 
 
On the other hand, the MFS is discussed. The main advantages of this meshless method are 
pointed out. Here we introduce a Gaussian MFS in which instead of plain collocation we 
actually perform Gaussian collocation which in practice increase accuracy. One great 
advantage of MFS is that singularities are avoided. An analysis of the numerical 
performance of these two approaches is presented.  The obtained results are validated using 
the exact analytical solution for two triangular wedge-like mountains with internal angles of 
120º and 90º [1]. Thus, displacements and rotations obtained using these analytical 
solutions are compared with those from IBEM and MFS. 
 
Rotations are computed for different topographical profiles and various incoming fields and 
concentrated sources as well in both frequency and time domains. The effects of topo-
graphy on rotational ground motion are discussed with emphasis on structural response. 
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