A STABILIZED DISCONTINUOUS GALERKIN FORMULATION FOR HELMHOLTZ PROBLEMS

M. Amara¹, R. Djellouli² and *M. Grigoroscuta³

 ^{1,2,3}INRIA Futurs, Magique 3D team
^{1,3} Laboratoire de Mathématiques Appliquées
Université de Pau et des Pays de l'Adour, CNRS-UMR 5142 BP 1155, 64013 Pau Cedex, France
² Department of Mathematics, California State University Northridge 18111 Nordhoff Street, Northridge, CA 91330-8313, USA
¹mohamed.amara@univ-pau.fr, ²rabia.djellouli@csun.edu,
³magdalena.grigoroscuta@etud.univ-pau.fr

Key Words: *Helmholtz equation, discontinuous Galerkin method, plane waves, Lagrange multipliers, positive definite Hermitian matrix*

ABSTRACT

The Helmholtz equation belongs to the classical equations of mathematical physics that are well understood from a mathematical view point. However, the numerical approximation of the solution of those equation is still a challenging problem, despite the tremendous progress made during the last years. Indeed, the classical finite element method – based on polynomial approximation – becomes too expensive for large wavenumbers, when trying to control the numerical dispersion errors. Thus, other techniques were proposed, based on the common idea of incorporating some *a priori* knowledge about the solution. Mainly, the idea of using plane waves was developed in different frameworks, continuous and discontinuous. One may cite the partition of unity method [1], the residual-free bubbles [2] and the discontinuous Galerkin methods [3].

We propose here a new discontinuous Galerkin formulation, based on a local approximation of the solution by plane waves that satisfy the wave equation. In order to enforce a weak continuity across the element interfaces, we introduce Lagrange multipliers. The method is built in a variational formulation framework that leads to a linear system associated with a *positive* definite Hermitian matrix. This matrix results from using a stabilized-like technique. Therefore, we use a preconditioned conjugate gradient algorithm to solve the system without computing the resulting matrix.

Numerical results to illustrate the potential of the method for solving efficiently Helmholtz problems in the mid- and high-frequency regime will be presented. Such results are compared to the ones obtained by the discontinuous Galerkin method designed by C. Farhat *et al* in [3] and analyzed mathematically in [4].

REFERENCES

- [1] I. Babuska and J. M. Melenk, "The partition of unity method", *Internat. J. Numer. Meths. Engrg.*, Vol. 40, pp. 727-758, (1997)
- [2] L. P. Franca, C. Farhat, A. P. Macedo and M. Lesoinne, "Residual-free bubbles for the Helmholtz equation", *Internat. J. Numer. Meths. Engrg.*, Vol. 40, pp. 4003-4009, (1997)
- [3] C. Farhat, I. Harari and U. Hetmaniuk, "A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime", *Comput. Methods Appl. Mech. Engrg.*, Vol. **192**, pp. 1389-1419, (2003)
- [4] M. Amara, R. Djellouli and C. Farhat, "Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems", *to appear*