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ABSTRACT

In an isothermal framework, energetic models based on the works of MIELKE [1] have been meanwhile
established for very different situations, e.g. shape memory alloys [2], crack growth [3], etc.. They are
also applicable in case of non-convex potentials of multi-phase materials [4]. The main ingredients
are the stored energy functionalE , that depends on the admissible displacement fieldu and the phase
distributions within the domainΩ ⊂ R

d, and the dissipation functionalD giving the dissipated energy
in case of phase transformations (i.e. a change of the phase distribution within Ω). Both functionals
E andD occur in a static stability inequality and in an energy conservation equation in the following
energetic formulation: Find among all admissible displacement fieldsũ and phase distributions̃s the
solution(u, s) such that

E(t,u, s) ≤ E (t, ũ, s̃) + D (s(t), s̃) (1)

and
E(t,u, s) + Ediss(t, s) = E (0,u0, s0) − Ẽext(t,u) , (2)

whereẼext denotes the energy due to external load andEdiss(t, s) is the complete dissipated energy up
to timet. A time incremental formulation of (1) and (2) yields an infimum problem for a partition{tk}
of the given time interval

E (tk,uk, sk) = inf
(u,s)

{E (tk,u, s) + D (sk−1, s)} (3)

From theoretical point of view, the main advantage is that energetic models admit solutions under weak
regularity requirements. Additionally, convexity assumptions can be replaced by requirements on the
external loading.

Actually, for applying such theories thermal dependencieshave to be included since many composites
and multi-phase materials are either produced by or designed to withstand thermal-mechanical load-
ing. Thus, a thermomechanical extension of the isothermal energetic models is needed. First existence
results for non-isothermal energetic models have been obtained [5] assuming a known equilibrium so-
lution of the thermal problem.



As an extension of [5] we propose a thermo-mechanical microscopic energetic model [6]. The consid-
eration of thermal effects results in a twofold coupling: onthe one hand, the coupled nature of thermo-
elasticity itself is respected, and on the other hand temperature dependent phase transformations within
the material directly influence the dissipation functionalD as well as the energy functionalE . Thus in
(1) and (2) the temperatureθ has to be considered as an additional independent variable.Moreover, a
new thermal contributionWth to the stored energy densityW emerges

Wth(x,Du, s, θ) =

θ∫

θ0

∑
p∈P

1Ωp
(x) c(p)(θ′) dθ′ +

∑
p∈P

1Ωp
(x) b

(p) : (Du) (θ − θ0) (4)

whereP denotes the set of phases within the material,Ωp ⊂ Ω the domain occupied by the phasep ∈ P,
c(p′)(θ) the temperature-dependent specific heat of the different phases andb denotes a tensor of second
order as the generalization of the linear thermal expansioncoefficient in case of anisotropic material
behaviour. Restrictions on the energy contributions and the material parameters in combination with
convexity requirements are studied to guarantee the existence of solutions. Under suitable conditions,
a new strongly staggered scheme is defined for a first numerical solution procedure of the coupled
thermo-mechanical energetic model [7].

An application besides shape memory alloys is to model the thermo-mechanical response of carbon fibre
reinforced carbon where the microstructure is temperature-dependently formed by different textures of
pyrolytic carbon [8].
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